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Abstract
A novel energy model (VSGB 2.0) for high resolution protein structure modeling is described,
which features an optimized implicit solvent model as well as physics-based corrections for
hydrogen bonding, π-π interactions, self-contact interactions and hydrophobic interactions.
Parameters of the VSGB 2.0 model were fit to a crystallographic database of 2239 single side
chain and 100 11–13 residue loop predictions. Combined with an advanced method of sampling
and a robust algorithm for protonation state assignment, the VSGB 2.0 model was validated by
predicting 115 super long loops up to 20 residues. Despite the dramatically increasing difficulty in
reconstructing longer loops, a high accuracy was achieved: all of the lowest energy conformations
have global backbone RMSDs better than 2.0 Å from the native conformations. Average global
backbone RMSDs of the predictions are 0.51, 0.63, 0.70, 0.62, 0.80, 1.41, and 1.59 Å for 14, 15,
16, 17, 18, 19, and 20 residue loop predictions, respectively. When these results are corrected for
possible statistical bias as explained in the text, the average global backbone RMSDs are 0.61,
0.71, 0.86, 0.62, 1.06, 1.67, and 1.59 Å. Given the precision and robustness of the calculations, we
believe that the VSGB 2.0 model is suitable to tackle “real” problems, such as biological function
modeling and structure-based drug discovery.
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INTRODUCTION
Knowledge of protein structure at atomic resolution is essential for modeling biological
function and structure-based drug discovery approaches.1–3 While the generation of
experimental structures, propelled by high throughput crystallography, continues to advance
exponentially, the number of known protein sequences is growing even more rapidly.
Furthermore, for any given sequence, there may be a significant number of biologically
relevant conformations, not to mention possible structural reorganization associated with
ligand binding or with protein-protein interactions. Hence, it is unlikely that the entire
universe of biologically relevant protein structural data can be accessed by exclusively
experimental means.
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Computational modeling represents the logical approach to constructing protein structures
that are not experimentally available. The coverage of protein families continues to increase
rapidly in the Protein Data Bank (PDB), which implies that the vast majority of protein
structure prediction problems involve perturbation of a known structure by a relatively small
RMSD. Homology modeling, using sequence and profile-based approaches,4–6 continues to
make great progress, and models with the correct architecture and low RMSD can be built
for substantial fraction of interesting cases, particularly for pharmaceutically relevant targets
where substantial experimental work on the protein family to which the target belongs (e.g.
kinases) has typically been performed.7

However, to predict relative protein conformation energetics and protein-ligand binding
affinities, very high resolution structures are required, and current homology models are
often not quite good enough for this purpose (although the suitability varies depending upon
the target and the specific project for which the structure will be employed).8 The
technology that would address this problem is refinement of homology models, in which the
RMSD of the homology model is progressively reduced until it is suitably close to the native
structure. Such a refinement strategy in turn requires a sufficiently accurate potential energy
function, including modeling of solvation effects and detailed physical chemistry of protein
interactions, e.g. hydrogen bonds. If the potential energy surface has a free energy minimum
that is distinct from the native structure, this implies a fundamental limitation on the RMSD
that can be achieved. With an accurate potential surface, one is then left with the problem of
sufficiently robust and comprehensive sampling of phase space, a challenging task given
that the homology model may deviate from the native structure at any location in the
protein.

There are various possible strategies that can be employed to carry out refinement. The most
straightforward approach would be to perform a molecular dynamics simulation using an
all-atom protein model and explicit representation of aqueous solvent. However, such
simulations are very expensive computationally, and even assuming that the potential
functions used in the simulation (which at present generally do not incorporate
polarizability, for example) are adequate to yield the native structure as a free energy
minimum, the effort required would be extremely large even for a small protein, and
prohibitive for larger proteins and protein assemblies which constitute the great majority of
biologically interesting systems.

An alternative approach to refinement is to utilize a continuum representation of solvent,
along with an all-atom protein force field. Continuum approaches have two major
advantages. First, it is not necessary to average over the positions of explicit water
molecules, which generally requires very lengthy convergence times. Secondly,
conformational search methods, as opposed to molecular dynamics, can conveniently be
employed in conjunction with a continuum solvation model. Such methods can be many
orders of magnitude more efficient than molecular dynamics for locating the global free
energy minimum of the model, because much larger steps in phase space can be taken. The
generalized Born continuum solvent model, in particular, is relatively inexpensive to
evaluate, and is amenable to calculation of gradients, which are necessary for minimizations.

While considerable progress has been made, in our group and others, in advancing the state
of the art in continuum solvation calculations,9–11 two principal problems still remain. First,
as in any energy model applied to high resolution protein structure refinement, the model
must be accurate enough to actually improve homology models beyond their current level of
resolution. In considering the accuracy of a force field plus a continuum solvation model,
what matters is the potential energy surface defined by the model as a whole, as opposed to
the individual components. The problem is in some ways more challenging than that of
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constructing force fields for explicit solvent simulation, because development of an accurate
continuum model requires guessing and experimentation, since the functional form
represents a reduction of the true Hamiltonian of the system to a non-rigorous model
approximation (as is the case, for example, in density functional theory in electronic
structure). Hence, the accuracy of continuum models requires continuous improvement,
either by comparison with explicit solvent simulations, experimental data, or both. Secondly,
the sampling problem remains one of great difficulty, although amenable to a wide range of
algorithmic acceleration due to the ability to employ conformational search methods of
various types.

In previous work, we have made a series of improvements in both the energy model and
sampling algorithms implemented in our continuum based Protein Local Optimization
Program (PLOP).12–17 These improvements have enabled reasonable results to be obtained
for loop predictions up to 20 residues. However, a non-trivial fraction of test cases continued
to exhibit large RMSDs, in some cases accompanied by large energy errors (defined as the
energy gap between the predicted and minimized native structures). These results, while
encouraging, reflected the fact that there was still important missing physics in our previous
energy models.

In the present paper, we describe the most recent version of our energy model, the VSGB
2.0 model, which has been rigorously optimized by fitting to accurate experimental side
chain and loop (11–13 residues) data, and contains a number of new terms not incorporated
into the older functional form, as well as many reoptimized model parameters. We evaluate
the performance of the VSGB 2.0 model by predicting structures for a set of 115 super long
loops of 14–20 residues. At these lengths, alternative approaches in the literature uniformly
display rapidly increasing RMSD errors,18,19 a reflection of the greatly expanded
conformational freedom associated with these very long loops; and in fact, there are very
few prior studies in which loops of such lengths have been investigated systematically using
a large data set. Remarkably, despite the exceptionally demanding test set (for which no
parameter adjustment was made to improve agreement with experiment), a high degree of
robustness, and small backbone and side chain RMSD, are demonstrated for 100% of the
test cases. Achieving this level of accuracy requires other improvements besides the energy
model, most prominently continued advances in the sampling algorithms, and application of
a reliable approach to assigning protonation states, both of which are described in what
follows. Given the precision and uniform robustness of the calculations, we believe that the
VSGB 2.0 model and sampling algorithms, for the first time, are suitable for successfully
tackling the “real” problem defined above, refining homology models (although augmented
sampling algorithms will be required to perform what is clearly a more global sampling
challenge than prediction of a single loop, no matter how long, and key protonation states
will have to be sampled, rather than deduced from the native structure).

Very different philosophies have been used over the past decade to optimize and to evaluate
atomic level protein models based on continuum solvation description. Alternatives have
included fitting generalized Born models to Poisson-Boltzmann (PB) results (note that the
PB model itself has to be parameterized in some fashion),20,21 exploring performance in the
folding of small proteins,22,23 and comparisons with explicit solvent simulations.24,25 The
present work is distinguished by the approach of fitting parameters to a large database of
crystallographic single side chain and loop data (including a number of novel terms, one of
which, the variable dielectric model, approximately incorporates polarization, and has
proved to be extremely important in obtaining quantitatively useful results), and rigorously
evaluating structural prediction accuracy for a large and demanding test set, the long loop
data set described above. In our view, the use of these large training and test sets eliminates
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the possibility of overfitting, and provides confidence that the physics of the model is
correct, and the right answers are being obtained for the right reason.

The paper is organized as follows. We first discuss our selection of the training (side chain
prediction, loop prediction) and test (super long loop prediction) sets. The use of an
improved training set (as compared to that employed in ref.15) turns out to be very
important; our previous training set, despite the overall structural accuracy implied by the
crystallography, contained side chains with ambiguous atom placement due to missing
electron density in the crystallographic data. We then briefly review our algorithms for side
chain and loop prediction, which have been described previously.12–14 The VSGB 2.0 model
is then discussed in detail, as well as the optimization protocol based on single side chain
and 11–13 residue loop predictions. Results for the test set of super long loop prediction
(length of 14–20 residues) are then presented, along with the discussion of the results.
Finally, in the conclusion, we summarize the results and consider future directions.

MATERIALS AND METHODS
Selection of Data Sets

The rapid increase in the number of high resolution X-ray crystallographic structures has
allowed us to build reliable data sets for training and testing the VSGB 2.0 model. In order
to ensure the high quality, the data sets were selected based on the following criteria:

1. All structures are PDB X-ray crystallographic structures with low sequence identity
(no more than 30% similarity) and high resolution (better than 1.0 Å for the side
chain set and 2.0 Å for the loop sets).

2. Side chains or loops should not have alternative structures or missing heavy atoms.

3. Side chains or loops should not be affected by ligands. The distance between the
side chain/loop and a ligand is defined as the shortest heavy atom distance. The
minimum distance allowed to any organic ligands is 4.0 Å and to any metal ions is
6.5 Å.

4. The average B-factor should be lower than 35.00.

5. The real space R-factor (RSR) of each residue should be lower than 0.200.

6. All atoms of the side chains or loops should be found to occupy well defined peaks
in the experimentally determined electron density when visualized.

With all these criteria, we have collected 2239 single side chains from 45 proteins for the
side chain training set, 100 loops (length of 11–13 residues) from 72 proteins for the loop
training set, and 115 super long loops (length of 14–20 residues) from 97 proteins for the
loop test set. The composition of proteins in these data sets is listed in Table S1–3 in the
supporting information.

Preparation of All-atom Models
As most crystallographic structures do not contain the hydrogen positions, it is necessary to
add hydrogen atoms and determine the protonation states of ionizable residues for
calculations at an atomic level of resolution. Additionally, the ambiguous orientation of Asn,
Gln, and His due to the similar electron density of two alternative conformations rotated by
180° also impairs the correct physics of the models. Therefore given the heavy-atom
coordinates from X-ray crystallography, we created all-atom models for each protein using
the Interaction Cluster Decomposition Algorithm (ICDA).26 The ICDA assigns protonation
states of ionizable residues, conformations of Asn, Gln, and His, and hydrogen positions of
hydroxyls, by constructing clusters of potentially interacting side chains, enumerating a list
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of possible hydrogen bonding networks, and ranking these potential networks via energy
evaluation. We should also note that in this work we improved the original ICDA algorithm
reported in ref. 26 by using self-adjusted cluster sizes and more rigorous energy evaluation;
the details of these improvements will be described elsewhere.

In addition to the protein, crystal environment, organic ligands, and metal ions were also
taken into account for a fair comparison to the crystal structures obtained from experiments.
Since the role of crystal environment and ligands in protein structure prediction has been
extensively discussed,13,27 their inclusion in our all-atom models was done in an automated
fashion.

Single Side Chain Prediction Algorithm
Single Side Chain Prediction (SSCP) is defined as prediction of the conformation of one
side chain with the rest of the protein fixed at the atomic positions of the native structure.
The algorithm exhaustively samples side chain conformations with a residue-specific
rotamer library at a high resolution.28 Clash-free conformations are evaluated and sorted
according to the single point energy or the energy after minimization. The final prediction is
determined by the lowest energy conformation, either with or without minimization. In this
algorithm, all the conformations that survive after the steric clash check are kept for the
evaluation stage. This is a modification to the original algorithm employed in previous
publications,12,15 which prescreens all the candidates with a reduced energy score and
clusters the remaining conformations to only consider the cluster representatives. Since the
total energy score is the only measure to evaluate all the conformations in the pool, the
current version of SSCP algorithm is better able to provide a direct comparison of how well
the energy models can distinguish the native from the non-native conformations in realistic
applications such as loop prediction, where all of conformational space is considered, and
minimization of the loop (which includes all side chain degrees of freedom) is employed.
The optimized parameters obtained from SSCP fitting are discussed below.

Loop Prediction (length of 11–13 residues) with Decoys
Our loop prediction (length of 11–13 residues) was carried out with decoys. Conformations
in the decoy set were generated from the loop predictions described in previous work.14

Each loop case contains thousands of conformations in the decoy set, representing a wide
spread of samples in the conformational space. For the purpose of optimizing the energy
model (more specifically the hydrophobic term), the minimized conformation with the
lowest energy was selected as the prediction. Loop prediction of 11–13 residues was
employed to optimize the hydrophobic term, because the hydrophobic term is much larger in
a loop than in a side chain and thus more sensitive in loop prediction. The use of decoys
avoids the costly sampling in a vast conformational space, greatly reduces the sampling cost,
and consequently allows fast optimization of the hydrophobic term. The optimized
functional form and parameters are discussed below.

Super Long Loop Prediction (length of 14–20 residues) Algorithm
Our algorithm of Super Long Loop Prediction (SLLP) uses a hierarchical approach
combined with an advanced sampling method to predict loops longer than 13 residues.
Compared to the shorter loop prediction, super long loop prediction requires more intensive
sampling effort. To improve both accuracy and efficiency, the algorithm uses a advanced
sampling method based on a detailed dipeptide backbone rotamer library, which was first
described in previous work17 (with trans rotamers only) and improved in this work with
addition of cis rotamers. In the SLLP algorithm, the loop candidates are first constructed
without any constraint at the initial stage, while the rest of the protein remains the same as
the native. An exhaustive search for possible loop conformations is carried out in two
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constrained refinement stages and a series of fixed stages.14 At the end of each stage, the
loop conformations generated in all the previously finished stages are ranked according to
the energy after minimization, and the top ones without redundancy are sent to the next
stage. Finally, the loop conformation with the lowest minimized energy is selected as the
prediction.

To accurately predict protein loops longer than 13 residues, it is extremely important to
generate conformations as close as possible to the native at the early sampling stages.
During the initial stage, a large number of loop structures are constructed from 5 parallel
calculations with overlap factor thresholds 0.45, 0.50, 0.55, 0.60, and 0.65. An overlap
factor is defined as the ratio of distance between two atoms and the sum of their van der
Waals radii. Loop conformations are considered with clashes and then abandoned, if any
pair of atoms is found with an overlap factor lower than the threshold. A high overlap factor
threshold sometimes causes sampling failure in a confined space or generates similar loop
candidates. Therefore, multiple low overlap factors in the initial stage are important to
generate a wide variety of loop candidates for the later stages.

The fixed stages, which sample a sub-region of the loop, are crucial in our hierarchical
method for super long loop prediction. During the fixed stages, a large conformational space
is searched and the native-like conformations are enriched progressively among the top loop
candidates with the lowest energies. A “Fix N” stage only samples the residues that are
outside of the fixed N residues in the loop. Since these N residues can start from either the
C- or the N-terminal of the loop in question, all the N+1 combinations are considered in
each “Fix N” stage. Sampling up to the “Fix 5” stage is adequate for the accurate prediction
of many super long loops, but we extended to the “Fix 10” stage which successfully
addressed a relatively small number of cases with serious sampling errors. The extension of
the fixed stages up to 10 residues appears to be sufficient to essentially eliminate major
sampling errors for loops up to 20 residues in length. It is likely though that additional
sampling effort would benefit loops longer than 18 residues, where a jump in the average
RMSD can be seen as compared to loops in the 14–18 residue length regimes(see the results
below). Nevertheless, the current algorithm is sufficient to eliminate any errors greater than
an RMSD of 2.0 Å even for the longer (19 and 20 residue) loops. On the other side,
sampling that stops at “Fix 5” could have possible statistical bias, which we further discuss
in the Discussion section.

Super Long Loop Prediction Method Incorporating Surrounding Side Chains
To further test the effectiveness of the VSGB 2.0 model, we also performed super long loop
prediction incorporating surrounding side chains (SLLP-SS). The method has been
previously described by Sellers et al.,29 in which the surrounding side chains that have
heavy atoms within 7.5 Å from any C-beta atoms in the target loop are optimized
simultaneously with the loop. In SLLP-SS, these surrounding side chains are temporarily
removed when the backbone of the loop is being sampled. Then the side chains on the loop
as well as those in the surroundings are put back and optimized by rotamer library sampling
and minimization. Because the conformational phase space increases substantially when the
surrounding side chains are optimized in addition to the loop, our most extensive
hierarchical approach for long loop prediction is employed using the sampling stages “Fix
1” through “Fix 10”.

The VSGB 2.0 Model
I. Energy Function—The VSGB 2.0 model provides a novel form of the energy function
(Eq. 1) which contains the OPLS-AAprotein force field bonded and nonbonded terms, as
well as a solvation term and a number of physics-based correction terms. The solvation free
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energy Gsol and the components of physics-based corrections Ecorrections are described in
detail below.

(1)

II. Solvent model—Solvation and desolvation effects are among the most important
factors to determine a protein’s global and local conformations in solvent.30 The VSGB 2.0
model approximates the solvation free energy with an optimized implicit solvent model,
which is based on Surface Generalized Born (SGB) model10,31 and the variable dielectric
(VD) treatment of polarization from protein side chains.15 The SGB model, as an
approximation to the Poisson-Boltzmann Equation (PBE), has been widely used in protein
structure modeling. The variable dielectric treatment further improves the accuracy of the
SGB model by varying the internal dielectric constants from 1.0 to 4.0 to incorporate the
polarization effects. In this work the VD-SGB implicit solvent model, as an important
component of the VSGB 2.0 model, has been further optimized via fitting to single side
chain predictions.

In a typical GB model, the solvation free energy (Gsol) is expressed as the sum of a cavity
term Gcav), a van der Waals term (Gvdw) and a polarization term (Gpol) (Eq. 2).32,33

(2)

The nonpolar solvent-solute interaction is usually represented by the sum of the cavity term
and the van der Waals term, which is considered proportional to the solvent-accessible
surface area (SASA) (Eq. 3).

(3)

However, such a surface area model has been found insufficient to account for the nonpolar
solvation effect (e.g. dispersion) in many previous studies.34,35 Therefore in our VSGB 2.0
model, the nonpolar contribution of solvation is calculated by a parameterized hydrophobic
term described in detail below. The polar solvent-solute interaction is represented by the
polarization term which depends on the solvent and internal dielectric constants, the partial
charges, and fGB (Eq. 4).

(4)

fGB is a function of the distances between two atoms (rij) and their generalized Born radii (αi
and Equation j) of the form described in ref. 32.
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(5)

(6)

In Eq. 5, the internal dielectric constant εin (ij) can vary from 1.0 to 4.0 as the maximum
value of the internal dielectric constants of atom i and atom j. Table I shows the assignment
of internal dielectric constants in the optimized VD-SGB model and in the original VD-SGB
model.

The optimized VD-SGB model reduces the values of internal dielectric constants for Lys,
Glu, protonated His and neutral His while increases the values for Asp and Arg. These
changes, although derived from parameterization, actually incorporate a better physical
picture from two main aspects: first, the dielectric constant assigned to the neutral His is
adjusted to be identical to other non-charged amino acid residues; second, the internal
dielectric constants for the acidic amino acid residues (Asp and Glu) are tuned to have closer
values, more consistent with their chemical similarity.

III. Hydrogen Bonding Correction—An accurate description of hydrogen bonds is
critical to predicting protein structure at high resolution. While a conventional fixed charge
force field such as OPLS-AA does a reasonable job of getting the magnitude of hydrogen
bonding interactions right, it is limited by having an atomic point charge description of
electrostatics, as opposed to a more accurate multipole or lone pair description. One
approach would be to improve the electrostatics by explicit addition of such higher order
terms, as has been done in the AMOEBA force field.36 An alternative is to use an empirical
functional form to enforce hydrogen bond angles and distances, fitting to experimental PDB
data. We have chosen to use the latter approach, following work of Baker and coworkers37

as in the spirit of exploiting the large amount of experimental structural data in the PDB to
achieve the highest possible accuracy for protein structure specifically. The new terms are
added as a correction to the existing OPLS-AA force field and as part of the VSGB 2.0
model, and the parameters are optimized by fitting to improve single side chain prediction
accuracy, as is discussed below.

The hydrogen bonding correction EHB term is a function of distances, angles and atom types
(Eq. 7). As the implicit solvent model is used, this correction is not applied to protein-
solvent hydrogen bonding, which can cause underestimation of the interaction between
protein and the first-shell solvent (see discussion below).

(7)

where i and j are heavy atoms involved in a hydrogen bond. The parameters of hydrogen
bonding geometry r0 (optimal distance between the hydrogen atom and the acceptor atom,
1.94Å) and θ0 (optimal angle of the donor atom, the hydrogen atom and the acceptor atom,
160°) were adopted from the Density Functional Theory (DFT) optimized formamide dimer
and acetamide dimer.37 αi and αj are coefficients related to the roles of the heavy atoms
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playing in a hydrogen bond, one as a donor while the other as an acceptor. For an atom i, ai
is assigned based on the following rules:

1. Positively charged nitrogen atoms in the side chains of Lys, Arg, charged His, and
the N-terminal backbone are strong donors, ai = 1.5

2. Negatively charged oxygen atoms in the side chains of Asp, Glu, and the C-
terminal backbone are strong acceptor, ai = −1.5

3. Polar atoms in the side chains of Ser, Thr, Asn, Gln, neutral His, Tyr, and Trp can
be either weak donors or acceptors. The assignment is dependent on the paired
atom j: if atom j is a strong donor, atom i is a weak acceptor; if atom j is a strong
acceptor and atom i has at least one bonded hydrogen atom, atom i is a weak donor;
otherwise, atom i is counted twice as a weak donor and a weak acceptor while atom
j as a weak acceptor and a weak donor respectively (as long as both have hydrogen
atoms). For the weak donor, ai = 0.5; for the weak acceptor, ai = −0.5.

4. A neutral backbone oxygen atom is considered as a weak acceptor while a neutral
backbone nitrogen atom is considered as a weak donor.

The hydrogen bonding correction depends on the distance between hydrogen atom and the
acceptor atom rHA, as well as the angles formed by donor atom, hydrogen atom and acceptor
atom θDHA (Fig. 1). Such a design involves the most relevant atoms in a hydrogen bond
while being easy to implement and inexpensive to calculate.

IV. π-π Packing Correction—π-π stacking is one of the main driving forces to stabilize
vertical base stacks in DNA and the hydrophobic cores in proteins.38–41 It also plays
important chemical and biological roles in processes like self-assembly42 and molecular
recognition.43 In contrast to covalent bonds and hydrogen bonds, π-π interactions are
slightly directional with diverse preferred configurations, such as parallel stacking
(sandwich and parallel-displace) and T-stacking (also known as T-shape),44,45 which are
generally referred to as π-π packing interactions in this work.

However, it is difficult to rigorously separate packing interactions from other nonbonded
terms such as van der Waals interactions. Two approaches can be used to provide estimates
of the magnitude of the packing effects; observation of π-π interactions in native protein
structures, via crystallography, and quantum chemical calculations of such interactions,
using high level theories that adequately capture electron correlation effects.38,46 For
example, Burly and Petsko found that the preferential distance for π-π packing interaction is
4.5 ~ 7.0 Å and the preferential dihedral angles are close to 90° in 34 protein
crystallographic structures.38 An estimation of the free energy contribution from Burly and
Petsko is between −0.6 ~ −1.3 kcal/mol. The quantum level study of Jurecka et al. gave a
higher estimation as −2.5 ~ −7.0 kcal/mol for aromatic amino acid dimers.46

Our own investigations involve an analysis of our side chain and loop data sets, and
comparison of predicted and native structures using our previous energy model, which did
not contain an explicit π-π packing term. When such a model is used, the native structures
contain a systematically higher percentage of π-π interactions (estimated by geometrical
criteria) than is seen in predicted structures. These observations have motivated the
development of a stacking term, empirically optimized to reproduce side chain structures,
and then tested via loop prediction.

Given the insufficient treatment of π-π packing interaction in standard force field methods,47

it would be useful to design a new π-π packing correction to improve the accuracy of the
previous energy model. Here, we present an explicit π-π packing correction in the VSGB 2.0
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model for pairs of amino acid side chains including the conventional aromatic ones such as
Phe, Tyr, His and Trp as well as the Y-aromatic structures such as Arg, Asn and Gln.48 To
reduce the complexity of the algorithm, only side chain-side chain packings are considered,
although π-π stacks also exist in interactions involving protein backbone. In Eq. 8, the π-π
packing correction is expressed as a function of distances r1, r2, and r3 as well as dihedral
angle θ (see Fig. 2), which are defined as follows:

r1: distance between the centers in aromatic planes of two side chains. r1 should be
within 0.0 to 8.0 Å.

r3: distance from the center in one aromatic plane to the other aromatic plane.

r2: horizontal displacement between the aromatic planes.

θ: dihedral angle between the aromatic planes. The range is from 0° to 90°.

(8)

where

(9)

f(x) is a normalized continuous function which shape is similar to a step function. In Eq. 9, A
and B are constants with values 2.0, while x0 and x1 represent the boundaries for the variable
x which values are shown in Table II. The coefficient C for the packing correction is −3.0
kcal/mol, in the range of Jurecka’s estimation.46 In the present VSGB 2.0 model, we use the
same parameters for all of the π-π interactions enumerated above. Preliminary investigation
suggests that there is not a large sensitivity to the specific value of, e.g. the value of C, and
that the various functional group interactions yield reasonable results with the single value
of −3.0 kcal/mol specified above. However, this needs to be looked at in more detail in
future works, as one would expect some systematic differences, particularly when the
chemistries are significantly different, as in the case of two guanidinium groups interacting
as compared to two phenyl rings.

V. Self-Contact Correction—It is common in proteins to find side chains of Asn, Gln,
Ser, and Thr interacting with their own backbone nitrogen or oxygen atoms. Such an
interaction depends on both the side chain conformation and the secondary structure, so that
it is more complicated than a normal hydrogen bond. It was found by Pal et al. that self-
contact interactions have specific roles in protein local environments, while most of them
have tertiary interactions, saturated by hydrogen bonds from side chain-backbone and side
chain-solvent.49 Therefore, self-contact interactions are considered as a special case of
hydrogen bonding in the VSGB 2.0 model.

The correction is represented as a sum of Gaussian functions dependent on the distance r
between two heavy atoms with self-contact interactions (Eq. 10). One atom is the polar atom
from the side chain of Asn, Gln, Ser, or Thr, while the other one is the backbone nitrogen or
oxygen atom in the same residue. Based on our statistical study with high resolution PDB
structures, Asn, Ser, and Thr are most likely to form self-contact interactions, so that the
correction is stronger for these three amino acid residues. The value of r0 was taken from the
most populated distance for the corresponding amino acid residue. Ser and Thr are treated
with identical parameters due to their similarity in side chain hydroxyl group. It is worth
mentioning here that the coefficient C is used to rescale the correction if the amino acid
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residue is in a regular secondary structure, since the self-contact interaction disturbs the
hydrogen bonding network in a helix or sheet. Parameters for the self-contact correction are
presented in Table III.

(10)

VI. Hydrophobic Term—The hydrophobic term was introduced by us in a previous
version of our energy model.14 The original term was taken from a scoring function
employed in docking calculations, ChemScore.50 The hydrophobic term rewards contacts
between nonpolar heavy atoms and stabilizes hydrophobic contacts. As the effect of
hydrophobic term is much smaller in one side chain than in a loop, in the VSGB 2.0 model
we replaced the linear function with a polynomial and refit the parameters based on the loop
predictions at lengths of 11–13 residues.

(11)

(12)

where

(13)

The coefficient in Eq. 11 was fit by a line search algorithm and the optimal value we
obtained is −0.30. (Comparison of the linear function and polynomial is shown in Fig. S1 in
supporting information.)

The hydrophobic term is intended to model the interaction of hydrophobic surfaces
presented by various protein and ligand groups with water; when these groups make contacts
(in the extreme case forming the hydrophobic core of the protein), unfavorable interactions
with water are eliminated, and this effect drives hydrophobic packing. The atom-atom
contact term described above represents an alternative to models which attempt to directly
compute cavitation and van der Waals interactions of the solute atoms with the solvent. Our
empirical investigations, initially described in ref. 14 but continued over the past several
years with extensive experiments on large data sets, suggest that the model of Eq. 12 and 13
provides superior predictions as compared to more standard approaches penalizing exposed
hydrophobic surface area, which are generally derived from small molecules in bulk
solution, a very different situation from hydrophobic groups embedded in an active site
cavity, or otherwise positioned in confined spaces within a protein environment. Therefore,
in the VSGB 2.0 model, we have eliminated the Gcav and Gvdw terms discussed above in Eq.
2 and 3, and replaced them with the hydrophobic term presented in this section. The quality
of results for long loop prediction, which involve no further adjustment of the energy model,
will serve as an unbiased test of the validity of this approach.
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Optimization of the VSGB 2.0 Model: In the development of the VSGB 2.0 model, we fit
the methods and parameters to 2239 single side chain and 100 11–13 residue loop
predictions. The goal of optimizing the parameters in the VSGB 2.0 model was not only to
improve the results of single side chain or loop prediction, but also to give a more accurate
physical description that is transferable to tackle practical problems such as homology
model refinement. As we mention in the introduction, fitting to large high-quality
experimental data sets helps to capture the correct physics in proteins and reduces the risks
of overfitting.

The VSGB 2.0 model was optimized by carrying out single side chain prediction. As
mentioned previously, the prediction of a single protein side chain can be determined by the
lowest energy conformation either without minimization (single point) or with minimization.
We tried to maximize the performance of the VSGB 2.0 model on both single point and
minimization selection during the procedure to optimize our model. Thus the parameter
optimization is based on the ability to select the lowest energy structure, as well as the
ability to make a good approximation of the energy funnel. Except the hydrophobic term
which was fit to 11–13 residue loop predictions with decoys, all the parameters of the
solvent model and physics-based corrections were optimized by a script based on a Monte-
Carlo (MC) algorithm. The MC script generates parameters, recalculates the single point
energy for each side chain candidate in the pool, and determines the prediction by the lowest
energy candidate. We selected two sets of optimal parameters with the lowest average
RMSDs suggested by the MC script, and performed the actual side chain predictions to
determine the final parameters as the ones leading to the highest success rate with and
without minimization.

RESULTS
Single Side Chain and Loop (11–13 residues) Prediction

The results of single side chain prediction obtained by the VSGB 2.0 model are shown in
Table IV in comparison to our previous energy model (herein referred to as VSGB 1.0),
which employs the OPLS-AA energy function with the original variable dielectric solvent
model and the earlier implementation of the hydrophobic term. 11 polar or charged amino
acids were included for the fitting in order to compare to the results from previous work.
The overall accuracy of the 2239 single side chain predictions is as high as 93.0% with
single point energy evaluation (SP) and 91.6% with minimized energy evaluation (MIN)
respectively. Generally the VSGB 2.0 model improves the prediction accuracy for 1.0%
(SP) and 2.0% (MIN). The most significant improvements come from Gln and Asn, at 3.1%
(SP), 5.6% (MIN) and 2.0% (SP), 3.2% (MIN). Another remarkable improvement advanced
by the VSGB 2.0 model is to reduce the large differences in accuracy between single point
energy evaluation and minimized energy evaluation. With the VSGB 1.0 model, the
difference in success rate is 7.5% for Lys and 8.1% for Gln; with the VSGB 2.0 model, it is
reduced to 1.6% and 5.6% respectively. Given the high success rate of the VSGB 1.0 model,
such an improvement is non-trivial. It is evident that the VSGB 2.0 model improves not only
the energy score but also the gradient of the energy score.

The hydrophobic term was optimized with loop predictions of 11–13 residue length, results
of which are presented in Table V. Although the change from linear form to polynomial
form did not significantly improve the accuracy, we still believe that the basic physical
arguments can easily justify our reformulation, which here allows for the introduction of a
continuous first derivative and the uniform application of the term throughout all of space.
In particular, a continuous first derivative would take the force into consideration and allow
a smoother minimization. Likewise, to our knowledge, there is no experimental evidence to
suggest that the hydrophobic forces exerted between crystal mates should be any different
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than those hydrophobic forces exerted within the unit cell. Thus, the parsimony principle
seems to motivate the change, even in the absence of strong data suggesting the polynomial
form adopted here is fundamentally more accurate than the earlier linear ramping function.

It should be noted that the average RMSD of ~ 0.8 Å reported in Table V arises from
selection of loops from a suite of decoys generated with an older energy model from ref. 14,
as opposed to full scale optimization of loop prediction with the current energy model and
sampling algorithms. In view of the results to be reported below for longer loops, it is likely
that improved results would be obtained for 11–13 residues loops with the latter, more
rigorous sampling protocol.

Super Long Loop Prediction
In order to validate the effectiveness of the VSGB 2.0 model, a super long loop set was used
to test the accuracy of the energy function described herein. A summary of the results is
shown in Table VI and Fig. 3, while the detailed results are given by Table S4 in the
supporting information.

Testing on the same data set, we are able to make a direct comparison of the relative
performance of the VSGB 2.0 model and the VSGB 1.0 model. Using the VSGB 2.0 model,
100.0% of loop predictions have backbone RMSDs below 2.0 Å from the native
conformations, where only 73.0% of the predictions made with the VSGB 1.0 model would
be similarly accurate. Furthermore, the better performance of the VSGB 2.0 model was
independent of any particular chosen success criteria, as depicted by Fig. 4, where the
percentage of predicted loops with RMSD lower than a cutoff is plotted as a function of the
given cutoff. The prediction difficulty often increases dramatically with loop length;
however, our results with the VSGB 2.0 model reflect average backbone RMSDs in a
narrow range from 0.51 to 0.80 Å for 14–18 residue loops. Even though it is extremely
challenging to predict loops longer than 18 residues, the VSGB 2.0 model still displays high
accuracy with average backbone RMSDs of only 1.41 Å and 1.59 Å for 19 and 20 residue
loops. Apart from the backbone, the VSGB 2.0 model also significantly reduces the RMSDs
for side chains in the loops. For example, for 18 residue loops, we obtained average
backbone/side chain RMSDs of prediction are 0.80/1.78 Å with the VSGB 2.0 model
compared to 4.18/5.59 Å with the VSGB 1.0 model.

For super long loop prediction, our hierarchical algorithm is able to enrich the native-like
conformations along the increasing fixed stages. The analysis of the average RMSDs at each
stage shows that the VSGB 2.0 model not only provides an accurate score for the final
prediction, but also improves the accuracy for each prediction stage (see Fig. 5), allowing
higher percentage of native-like confirmations and faster convergence towards the global
minimum. For example, both 14 and 15 residue loop predictions reach average RMSD
below 2.0 Å at least one stage earlier with the VSGB 2.0 model. This also implies that fewer
sampling stages are required with the VSGB 2.0 model, making the loop predictions more
cost efficient.

Super Long Loop Predictions in Inexact Environments
A subset of 10 cases ranging from 14 to 16 residues (all with reliable, well resolved electron
densities for the target loop as well as surrounding side chains) were used to test loop
predictions in inexact protein environments. An inexact environment was here created by
replacing the target loop by a non-native loop conformation (RMSD > 3.0 Å) and
minimizing the new structure with surrounding side chains. The loop prediction in inexact
environments was performed with method SLLP-SS, as was described earlier in Methods
section. The test results are shown in Table VII.
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Compared to the starting structures, all the 10 cases display improvements in RMSDs after
the loop reconstruction. This confirms that the VSGB 2.0 model together with the
augmented sampling method presented herein is able to improve the quality of models,
suggesting a high potential to succeed in refining comparative models. Although starting
from the inexact environment degrades the overall performance by 0.49 Å in the average
backbone RMSD, many of the cases actually reach similar accuracy as starting from the
exact environment, such as a 14-residue loop in 3BY9 (A205–218) and a 15-residue loop in
1RA0 (A361-375). Furthermore, the average error is still a highly satisfactory 0.91 Å, and
the maximum RMSD remains less than 2.5 Å. Systematic exploration of the increased error
induced by the inexact environment requires investigation of a much larger data set; we plan
to pursue this in future work.

DISCUSSION
The single side chain prediction results represent a major advance as compared to the
accuracy levels reported in ref. 15. A great deal of the improvement is due to the use of a
better side chain data set (in which all of the atoms in the side chain are reliably located by
from the electron density obtained from the crystallographic observations), as opposed to
improvements in the energy model. These results demonstrate that data set quality is vital in
both development and assessment of molecular models. Problems with the data set will
invariably produce misleading (and in some cases highly misleading) conclusions with
regard to the performance of the model.

The improvements in accuracy attributable to the new model are relatively small, but
significant, particularly as they are clustered in the polar and charged side chains.
Furthermore the vast majority of cases, where predictions failed, have quite small energy
gaps, implying that the impact on loop prediction of such errors would be relatively
minimal. However, we note that elimination of erroneous predictions is not the only benefit
to adding a new, physically important term to the energy model. In many cases, the VSGB
1.0 model may have given a correct prediction for a particular side chain, but not properly
evaluated the energy of the side chain conformation as compared to possible alternatives. As
an example, consider the π-π packing term which rewards stacking of aromatic residues. In
many cases, these residues are in the hydrophobic core of the protein, and reprediction of the
side chain conformation of the residue can have only one outcome due to steric
considerations; the problem is like a jigsaw puzzle in which the “piece” can fit back into the
puzzle in only one “conformation”. However, the energy gained from forming the entire
core in the specific fashion that enables many stacking interactions to be formed may be
underestimated by an energy model that does not reward stacking interactions. This would
have consequences not only for loop prediction (where, as we show below, incorrect loop
conformations often fail to make key stacking interactions present in the native
conformation) but also for refining a homology model so that it has the optimal interlocking
pattern of side chain interactions. Optimization of the π-π stacking and other terms to
improve side chain prediction uses a small fraction of “sensitive” side chain cases to detect
problems in the energy model and optimize the terms that improve these cases. The success
of this strategy is manifest in the results reported above for long loop prediction, where very
large improvements in average backbone RMSD and associated average side chain RMSD
are seen uniformly for the 14–20 residue loop database. The VSGB 2.0 model fixes a
number of cases which previously had substantial energy errors leading to inaccurate loop
RMSDs.

Impact of Systematic Application of Protonation State Assignment Methodology
When making either single side chain predictions or loop predictions, it is extremely
difficult to achieve accurate predictions if one or more ionizable side chains are represented
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in the incorrect protonation state. As a simple example, some Asp and Glu residues form
carboxylate “dimers” with neighboring Asp or Glu residues (without any nearby metal ions);
in the crystal structure, oxygen atoms from the pair of carboxylates belonging to each side
chain are observed to be within hydrogen bonding distance (~ 3.0 Å). This type of structure
implies that at least one of the carboxylates must be protonated. This costs free energy with
regard to the standard protonation state of a carboxylate in solution, but is clearly necessary
to avoid large repulsive interactions between charged oxygen atoms that would otherwise
occur (vs. forming a strong hydrogen bond). If the unprotonated forms are used, the “dimer”
structure will never be predicted as lowest in energy. Loop prediction is more subtle, but
side chains in loops do form salt bridges and hydrogen bonds which are dependent upon
protonation state. If these interactions cannot be formed due to failure to incorporate a
nonstandard (but accessible) protonation state, the energy of the native loop conformation
may fail to be competitive with incorrect alternatives.

All of the loop and side chain prediction results shown below have been generated by
running an automated protonation state assignment program, the ICDA, based on methods
described in ref. 26, on the entire protein of each member of the test set. Since the
publication of ref. 26, we have put significant efforts into improving the ICDA by running a
large number of test cases and examining them visually to make sure that obvious errors are
eliminated. However, the data sets in the present paper have been treated in an automated
fashion. The effects on accuracy of failing to run the ICDA has been examined for a selected
set of loops, those which yielded large energy errors in previous work which did not employ
systematic ICDA preparation (but also used a different energy model). By rerunning these
cases with ICDA preparation and the VSGB 1.0 model, it is possible to identify a subset of
cases where ICDA preparation is essential to achieving accurate results. At least 8 of 115
cases (7.0 %) require ICDA preparation to achieve accurate structure prediction (see Table
VIII).

In the present work, we are able to assign protonation states with high accuracy due to
having the native structure available. In the context of realistic homology model refinement,
the native structure would not be known in advance. Achieving the correct protonation states
would then require sampling differing protonation states on the fly during the simulations,
and/or running a number of alternative protonation states as a part of the iterative refinement
algorithm protocol. A number of publications in the literature describe successful on-the-fly
protonation state sampling algorithms,51,52 which could be adapted to our refinement
algorithms. It is likely though that a significant effort will have to be put into making sure
that these methods are sufficiently accurate to reliably achieve refinement objectives. The
present work should be viewed as proof of concept, demonstrating that if accurate
protonation states can be assigned, significant improvement in blind structural prediction
efforts will result. Running tests without proper protonation states, in contrast, would make
it impossible to distinguish intrinsic failures of the energy model from failures to assign the
correct protonation state.

Importance of Each Component in the VSGB 2.0 Model
In order to investigate the importance of each component in the VSGB 2.0 model, we ran a
number of tests over the subset of 14-residue loops with one component removed from the
model in each test. These tests were carried out as loop predictions with the same setting
mentioned before, and the results show that all the incomplete models have decreased
performance giving higher average backbone and side chain RMSDs. The average RMSD
changes compared to the VSGB 2.0 model were normalized and projected to pie charts in
Fig. 6, so that we can get a sense about the relative importance of each component in our
model. Summary of the test results are provided in Table S5 in the supporting information.
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The pie charts in Fig. 6 show that the most important component is the hydrophobic term
(LIPO), which has a significant impact on both the backbone and side chain accuracy.
Preparation of protonation states (ICDA), the hydrogen bonding correction (HB) and the π-π
packing correction (PACK) display close importance, but the last two components have
slightly bigger importance for the side chain than the backbone. This agrees to the stronger
accumulation of hydrogen bonding and π-π interactions in side chains than in backbone. The
self-contact correction (SC), only applicable to the side chains of few amino acid residues,
has the smallest importance as expected.

A Better Description of Protein Energy Landscape
As a mini folding problem, super long loop prediction at high resolution demands an energy
model with highly precise physical description of the loop in question as well as of the
environment. However, an inaccurate energy model with missing physics usually fails to
discriminate the native conformations from the non-native ones, leading to wasted sampling
effort in the false global minimum which could be far away from the true one. This explains
why sometimes a more intensive sampling effort leads to a poorer prediction. Through our
analysis of such mispredictions, the missing physics in our previous energy models appeared
to be stemming from inaccurate descriptions of electrostatic, hydrogen-bonding,
hydrophobic, and π-π interactions.

Using the optimized variable dielectric solvent treatment and the additional physics-based
corrections, the VSGB 2.0 model is likely to provide a better, more complete physical
description for protein high resolution modeling. The addition of corrections, especially to
the hydrogen bonding, π-π interactions and hydrophobic interactions, compensates the
effects that were incompletely described by the electrostatics, van der Waals, and nonpolar
interactions in the VSGB 1.0 model (see Fig. 7 as an example). As a result, the
corresponding native or native-like conformations are stabilized, with respect to the
competing non-native conformations, and thus are more likely to be the global minimum
energy structure on the potential energy surface. In addition to the more accurate description
of the global minimum energy structure, the VSGB 2.0 model also incorporates a stronger
bias along the whole of the energy surface towards more native-like conformations, which
could be due to the improved physical description of the overall energy surface. One
indication of the greater bias of potential energy surface of the new energy function towards
more native like structures is shown in Fig. 5, where the VSGB 2.0 model gives lower
average backbone RMSDs for each stage compared to the VSGB 1.0 model. This indication
could be interpreted as preliminary evidence that the new energy function is better
describing the “folding funnel” of the protein potential energy surface.53,54 Another
indication, more direct, is the consistent correlations of relative energies to the native and
RMSDs for all the conformations that have been sampled during the loop prediction. Two
examples are presented in Fig. 8 to further demonstrate the better physical description in the
VSGB 2.0 model. More plots of relative energies against RMSDs are shown in the
supporting information.

Water between Protein Molecules in the Crystal Structure
The 14 residue loop (A153-166) in a nucleotidase (PDBID: 1JP4) is unique in our data set of
super long loops: at the beginning, neither the VSGB 1.0 nor the VSGB 2.0 model alone
gave reasonable predictions. (The VSGB 1.0 model: backbone RMSD = 7.26 Å, EGAP =
−43 kcal/mol; the VSGB 2.0 model: backbone RMSD = 2.40 Å, EGAP = −30 kcal/mol).
Considering our starting point of improving the physical description, what is the missing
physics in this case? An analysis of the native structure has shown that the water molecules
bridge the loop in question and the crystal environment, which could lead to the incorrect
energy evaluation due to the limitations of the implicit solvent model.
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The sequence of this 14 residue loop (PYYNYQAGPDAVLG) has a high fraction of non-
charged residues, which in this case have strong hydrophobic interactions, unusually,
predominantly with several other protein molecules in the crystal environment, as opposed
to with the hydrophobic core of the protein molecule which the loop is a part of. Instead of
forming the extended native conformation which contacts the neighboring proteins, all the
mispredictions are packed into the protein body. However, we found that there are three
bound water molecules (HOH 858, 1057, and 1083) which contribute significantly to the
stability of the extended native conformation: all these water molecules connect the loop to
the crystal environment through their hydrogen bonding network and consequently pin down
the extended conformation (see Fig. 9). Such a first-shell solvation effect is unlikely to be
well represented by any implicit solvent model, and thus we could not create the correct
physical environment unless these water molecules were included.

In order to repredict this loop in the correct physical environment, we explicitly added these
three water molecules and the ones that form hydrogen bonds with them (HOH 858, 911,
1057, 1083, 1108, 1145, and 1173) to our all-atom model. Hydrogen bonds between the
explicit water molecules and the proteins were considered. With the presence of these water
molecules and the hydrogen bonding correction applied to protein-water interactions, the
prediction with the VSGB 2.0 model yields high accuracy (backbone RMSD = 0.31 Å, side
chain RMSD = 0.67 Å, EGAP = −4 kcal/mol). This case study highlights the limitations of
implicit solvent models, and suggests possible treatments of including or predicting crystal
water positions in future works.

It should be noted that the explicit waters are required specifically in the interstitial region
between protein molecules in the crystal structure. For a single protein molecule in solution,
the loop in question would in fact almost certainly adopt a different conformation, since the
hydrophobic region of the loop is buried in a hydrophobic region of the neighboring protein
molecule in the crystal; in fact, it might well be found in the competing conformation
selected without the crystal waters, in which the hydrophobic interactions of the loop are
primarily intramolecular, as opposed to with the neighboring molecule in the crystal.

Possible Sampling Errors in the Current Data Set, and Their Potential Effect upon
Accuracy of the Energy Model

The simulation of 115 long loops carried out in this paper requires a substantial amount of
computation time. Furthermore, the lengthiest simulations (using 10 fixed stages, referred to
in the text as “Fix 10”) requires considerably more computational effort than the 5 fixed
stage (“Fix 5”) algorithm that was employed for most of the calculations. This is the reason
that, in the data set presented above, we utilized the “Fix 10” algorithm only in cases where
the “Fix 5” simulations displayed an RMSD greater than 2.0 Å.

However, it must be recognized that such a protocol could conceivably lead to bias in the
results, as we do not know whether running the full “Fix 10” protocol on all of the cases
would produce additional errors. We have carried out a preliminary assessment of this
problem using a variety of computational experiments, which has led to the conclusion that
no more than 9 of the 115 cases potentially would exhibit energy errors leading to RMSDs
greater than 2.0 Å if run with the full “Fix 10” protocol. We carried out the full Fix10
calculations for these 9 cases; all produced structures lower in energy than the native
structure, and 6 yielded RMSDs greater than 2.0 Å, with the range of errors observed falling
between 2.0 and 4.5 Å (see Table S6 in supporting information). If these results are
substituted for the previous “Fix 5” results and then used to recalculate the average and
median backbone and side chain RMSDs for the entire data set, the results obtained are
given below in Table IX. The changes in the statistics are modest and most visible for the
loops longer than 18 residues, and it is possible that some of the problems are due to residual
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protonation state errors, an issue that requires further investigation. We intend to perform a
full study of the entire data set at the “Fix 10” (or higher) level, using a uniform sampling
protocol, and report the results in a future publication.

CONCLUSION
In this work, we have described a new energy model (VSGB 2.0) which contains an
optimized solvent model and physics-based correction terms. The VSGB 2.0 model was fit
to a large database of protein single side chain and loop (11–13 residues) prediction and
validated by a large set of super long loop predictions. It was shown that the VSGB 2.0
model, combined with the systematic protonation state assignment, improved the accuracy
of super long loop predictions by 27.0% compared to our previous energy model (VSGB
1.0). A series of extensive analysis shows that the VSGB 2.0 model not only improved the
results of single side chain and loop predictions, but also provides a better physical
description for high resolution protein structure modeling. Further tests will include
receptor-ligand docking, longer loop prediction, loop-helix-loop prediction, and applications
on a variety of proteins, such as kinases, G protein-coupled receptors, and cytochrome
P450s.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Illustration of geometry variables in hydrogen bonding correction.
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Figure 2.
Illustration of geometry variables in π-π packing correction. A) T-stacking. B) Parallel
stacking.
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Figure 3.
Accuracy of super long loop predictions. Red dots represent the average backbone RMSDs
while green lines represent the ranges of the backbone RMSD.
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Figure 4.
Comparison of loop predictions with the VSGB 2.0 model and the VSGB 1.0 model. The y-
axis shows the percentage of predicted loops within the RMSD cutoff on the x-axis.
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Figure 5.
Average backbone RMSD of the predicted loops (14 and 15 residues) at each sampling
stage.
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Figure 6.
Relative importance of components in the VSGB 2.0 model.
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Figure 7.
The π-π packing correction improves a 14 residue loop prediction (PDBID: 2C0H. Loop
A40–53). Compared to the native (green), the prediction with the VSGB 2.0 model (orange,
backbone RMSD = 0.55 Å) forms the correct T-stacked side chains with Trp and Tyr; the
prediction with the VSGB 1.0 model (yellow, backbone RMSD = 5.96 Å) have these two
side chains far away.
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Figure 8.
Loop prediction results of two cases with serious energy error in the VSGB 1.0 model. The
protein structures are shown on the left: the native structures are green, the predicted
structures by the VSGB 2.0 model are orange, and the predicted structures by the VSGB 1.0
model are yellow. The plots of relative energies against RMSDs are on the right. All the
conformations generated in the loop prediction are included; the green dots represent the
VSGB 2.0 model, and the red dots represent the VSG 1.0 model. The predictions are marked
as a large green triangle and a large red dot. A) PDBID: 3CCS. Loop A95-109: backbone
RMSD = 0.52 Å, EGAP = −17 kcal/mol (the VSGB 2.0 model); backbone RMSD = 2.36 Å,
EGAP = −24 kcal/mol (the VSGB 1.0 model). B) PDBID: 1UW4. Loop B899-916:
backbone RMSD = 1.97 Å, EGAP = 5 kcal/mol (the VSGB 2.0 model); backbone RMSD =
11.27 Å, EGAP = −102 kcal/mol (the VSGB 1.0 model).
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Figure 9.
The 14 residue loop in a nucleotidase (PDBID: 1JP4. Loop A153-166) and bound crystal
water molecules. Protein molecules from the crystal environment are shown in element color
scheme with green or yellow carbons. Hydrogen bonds that connect the loop in question and
the crystal environment are shown in blue dotted lines.
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Table II

Geometry parameters for π-π packing correction

r1 (Å) r2 (Å) r3 (Å) θ (°)

x0 3.5 0.0 0.0 0.0 (θ < 45°), 80.0 (θ >= 45°)

x1 6.5 3.5 5.0 20.0 (θ < 45°), 90.0 (θ >= 45°)
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Table III

Parameters of self-contact correction

Asn Gln Ser, Thr

A (kcal/mol) −4.7 −2.5 −4.8

B 3.2 4.0 3.2

C 1.0 0.0 0.8

r0 (Å) 3.2 3.8 3.2
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Table V

Summary of 11–13 residue loop prediction results with different forms of hydrophobic term

Hydrophobic term Included the crystal environment Average Backbone RMSD (Å) Accuracy (%)

Linear No 0.81 91.0

Polynomial No 0.83 91.0

Polynomial Yes 0.85 91.0
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