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Abstract
Sampling errors are very common in super long loop (referring here to loops that have more than
thirteen residues) prediction, simply because the sampling space is vast. We have developed a
dipeptide segment sampling algorithm to solve this problem. As a first step in evaluating the
performance of this algorithm, it was applied to the problem of reconstructing loops in native
protein structures. With a newly constructed test set of 89 loops ranging from 14 to 17 residues,
this method obtains average/median global backbone root-mean-square deviations (RMSDs) to the
native structure (superimposing the body of the protein, not the loop itself) of 1.46/0.68 Å.
Specifically, results for loops of various lengths are 1.19/0.67 Å for 36 fourteen-residue loops,
1.55/0.75 Å for 30 fifteen-residue loops, 1.43/0.80 Å for 14 sixteen-residue loops, and 2.30/1.92 Å
for 9 seventeen-residue loops. In the vast majority of cases, the method locates energy minima that
are lower than or equal to that of the minimized native loop, thus indicating that the new sampling
method is successful and rarely limits prediction accuracy. Median RMSDs are substantially lower
than the averages because of a small number of outliers. The causes of these failures are examined
in some detail, and some can be attributed to flaws in the energy function, such as pi-pi
interactions are not accurately accounted for by the OPLS-AA force field we employed in this
study. By introducing a new energy model which has a superior description of pi-pi interactions,
significantly better results were achieved for quite a few former outliers. Crystal packing is
explicitly included in order to provide a fair comparison with crystal structures.
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INTRODUCTION
One of the most important and challenging tasks in protein modeling is the prediction of
loops. A number of different approaches have been developed and over time there has been
a gradual improvement of predictive accuracy.1–16 These methods can be roughly divided
into two classes: ab initio (conformational search) and database search (or knowledge based)
methods. Ab initio methods build sterically feasible loop conformations from scratch, while
database search methods attempt to find a fragment from databases in the Protein Data Bank
that packs optimally into the space available to the target loop. Recently advances in ab
initio loop prediction have reached remarkable accuracy for loops up to thirteen
residues.6,12,13,16 Significant progress in database search has also been reported5,7. Despite
considerable effort in both ab initio and database search methods, the prediction qualities of
most of the methods degrade as loops get longer.1–12 Despite the fact that the occurrences of
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loops longer than thirteen residues in Protein Data Bank are not as frequent as for shorter
loops, long insertions or deletions are very common in template-based protein structure
prediction, and many examples can be found from targets in Critical Assessment of
Structure Prediction (CASP, information about CASP can be obtained from
http://predictioncenter.org/). Loops of this length can also be quite important from a
functional point of view, in many cases lining active site cavities and interacting extensively
with ligands binding to the active site. In this situation, it is necessary to use ab initio
methods to predict the structure in that region. Our goal is to develop an ab initio method for
super long loops that is both accurate and efficient in its ability to predict native-like
conformations.

There are two principal challenges that are common to all high resolution protein structure
prediction methods: sampling and scoring. The two issues are in fact entangled with each
other in many if not most cases. Many loop prediction approaches begin with the generation
of a large number of loops and then use some scoring function to select those candidates that
are energetically favorable. Currently many scoring functions, including the one we use in
PLOP6,12, can do a very good job in identifying native-like conformations if they are
sampled. However, if the conformations generated are not very close to or even far from the
native loop, refinement of the model fails to progress adequately. This picture highlights the
importance of sampling, especially for long loops. One of the main obstacles in long loop
sampling is the combinatorial problem: the number of possible conformations of a loop
grows exponentially with the length of the loop. In spite of a lot of efforts, such as
hierarchical loop prediction algorithm with multiple stages, has been made in our group to
alleviate this problem6,12, sampling failures appear frequently when the current
methodology (i.e. that in in the released version of PLOP, as described in refs. 6 and 12) is
applied to super long loops.

We have developed a new approach, based on a dipeptide segment sampling algorithm for
super long loops, which is implemented in PLOP, our in-house software. When applying to
the newly constructed test set with loops ranging from 14 to 17 residues, this algorithm
produced substantial improvements as compared to the most recent PLOP loop sampling
algorithm reported in the literature. The algorithm is similar to that which we used
previously6,12, the most important modification is to use dipeptide segment sampling instead
of single residue sampling. In the following part of this paper, a brief review of our previous
method and a description of our new sampling method will be provided in Materials and
Methods. In the Results and Discussion section, we present the results of applying this
method to the super long loop test set, and then examine the implications of the results with
regard to the using of dipeptide sampling method. We find that a high fraction of results are
improved as compared to prior work, but some outliers remain. We have tested the effect of
replacing our current energy and solvation model with a preliminary version of a modified
model which has been optimized to improve side chain prediction accuracy, and this
substantially reduces outliers due to both sampling and scoring failures. Finally, in the
Conclusion, we summarize our results and discuss the future directions.

MATERIALS AND METHODS
In previous work6, the Hierarchical Loop Prediction (HLP) algorithm, which is implemented
in our in-house software PLOP, has been tested for its ability to reconstruct protein loops in
crystal structures for a wide range of loops up to 10 residues. The sampling algorithm and
energy function of HLP have been improved in our group for longer loops12, ranging in the
length from 11 to 13 residues. However, both HLP and the improved method are not
effective enough for super long loops. Here super long loops refer to loops longer than 13
residues. In current paper, a new algorithm has been developed, which is a modification of
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the improved method, introducing a more powerful and robust sampling method designed
for super long loops: dipeptide segment sampling assisted by single residue sampling when
necessary. A full description of the previous protocols can be found elsewhere.6,12 We will
provide an overview of our previous methods, and then discuss the features of our new
method in detail, reviewing previous methods when appropriate.

Overview of Previous Methods
The previously published methods of a full loop prediction involve a hierarchy of stages. In
each stage, there are multiple single loop predictions. The lowest energy loops generated
from one stage are passed to the next, where more focused sampling is performed.

Specifically, as shown in Figure 1, the initial structure is passed to three, parallel, initial
prediction stages (only one is shown) labeled “Init.” The three initial stages differ by the use
of five different steric overlap factors: 0.50, 0.55, 0.60, 0.65 and 0.70, respectively. The
steric overlap factor is defined as the ratio of the distance between two atom centers to the
sum of their van der Waals radii, and specifies the criterion for rejection of an initially
constructed candidate loop (i.e., when the steric overlap factor for any atom of the loop
backbone exceeds the stipulated threshold, the candidate is discarded). Other steps in the
initial structure generation algorithm, such as clustering of similar loops, side chain
optimization, minimization, and final selection of low energy structures, are described in
references 6 and 12. The resulting five nonredundant (RMSD between any two structures is
larger than 0.7 Å) lowest energy structures from each of the initial stages (25 in total) are
passed as new starting structures to the parallel refinement stages (only one is shown in Fig.
1) labeled “Ref1”.

In the first refinement stage, each model retained from initial stage is subjected to a 4 Å
constraint on each Cα atom in the loop during sampling. The sampling protocol discussed
above is rerun with this constraint in place, focusing the sampling effort in a substantially
smaller region of phase space for each simulation seeded with a given model. Finally, the
five nonredundant lowest energy loops from all “Ref1” stages are passed to the next stage,
that is, the first fixed stage labeled “Fix1”.

Fixed stages are optional, but they significantly improve the accuracy for long loops; the
algorithm is described in more detail in reference 12. Usually there is more than one fixed
stages in a full loop prediction, they are denoted as “Fix1”, “Fix2”, etc. In each fixed stage,
several short fragments of the target loop will be predicted for each model while other parts
of the loop are fixed on their given conformations. Here we take a 14-residue loop
prediction as an example. In “Fix1” stages, one terminal residue in either end of the loop is
fixed, so there are two possible positions for each 13-residue loop. Then we do two 13-
residue loop predictions on each model and pass a few best (that is, nonredundant and
lowest energy) resulting models to “Fix2” stages. In “Fix2” stages, totally two terminal
residues from both ends of the loop need to be fixed, so there are three possible positions for
each 12-residue loop. Three 12-residue loop predictions will be performed on each model
and then several best resulting models will be passed to the next stage, that is, stage “Fix3”.
In “Fix3” stages, totally three terminal residues from both ends of the loop need to be fixed,
four 11-residue loop predictions will be performed for each model and so on. After the last
fixed stages, a few best models are passed to the second refinement stages (only one is
shown in Fig. 1) labeled as “Ref2”.

In stage “Ref2”, the Cα atoms in the loop are constrained to less than 2 Å from their starting
coordinates. Loop prediction proceeds as in the Ref1 stage discussed above, with the tighter
constraint to the initial seed providing a still greater focusing of phase space in performing
the sampling. Finally, the lowest energy loop from all stages is taken as the predicted loop.
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A full loop prediction algorithm involves multiple executions of PLOP, enabling additional
sampling effort to be focused on loop subsections that are constrained to lie in regions of
phase space that have previously identified as promising. In each stage of a full loop
prediction, multiple single loop predictions are executed with different input parameters.
One single loop prediction corresponds to the execution of the PLOP once. Each single loop
prediction consists of four basic stages: buildup, clustering, loop side chain optimization and
complete energy minimization.

Buildup refers to the generation of an initial set of loop conformations that will be passed on
to the subsequent stages. The cornerstone of our previous loop sampling methodology is
dihedral angle search, which is conducted via “rotamer libraries” for backbone dihedral
angles (i.e., discretized version of the well-known Ramachandran plot). To obtain the
dihedral angle libraries, a large (>500 structures), nonredundant database of high-resolution
(<2 Å) protein crystal structures have been used and every backbone dihedral angle was
recorded. The dihedral angles were then binned every 5°, and every (φ, ψ) combination that
appeared more than five times in the database was included in the backbone library. The
resultant library, at 5° resolution, contains 747 (φ, ψ) combinations for Gly, 215 for Pro, and
866 for all other residue types.

The extreme high resolution of the backbone libraries was chosen to ensure that
discretization error does not fundamentally limit the achievable accuracy. However, it also
magnifies the exponential scaling of conformational space and computational expense. In
practice it is not possible to sample the backbone dihedral angle for a loop of any nontrivial
length using such a large library. Effective sampling resolution is used to alleviate the
problem. For a single residue, first the entire list of (φ, ψ) combinations is screened for steric
clashes. For computational efficiency, the screening is accomplished through the use of the
overlap factor. Multiplying the overlap factor by the sum of the van der Waals radii for a
given pair of atoms yields a cutoff. A clash occurs when the distance between the atoms is
less than the cutoff. The default overlap factor of 0.70 is used in PLOP. Then, the screened
rotamers are further filtered, retaining a set of (φ, ψ) states in which all pairs of states obey
the relation: Δφ2 + Δψ2 > Reff

2, here Reff is the “effective resolution”. That is, the distance
between any two states in the set should be greater than certain cutoff.

The effective sampling resolution is chosen in an adaptive manner. The strategy is to define
in advance the minimum and maximum number of loops to be generated for a particular
loop length. If n is the loop length in residues, for loops no longer than nine residues, the
minimum number is 2n; for loops longer than nine residues, the minimum number does not
increase with the loop length any more, but fixes at 29, that is, 512. The maximum number is
106 for loops with any length. The effective resolution is then gradually decreased from a
very coarse value (300°), until the number of generated loops is intermediate between the
minimum and maximum numbers.

Loop buildup starts from both ends of the loop independently. Closed loops are generated by
applying a loop closure algorithm in the middle of the loop. The all closed loops are
subjected to a series of screens: N-Cα-C angle, backbone dihedral angles and sufficient
space for the side chain on the closure residue, and steric clashes between the two halves of
the loop.

The dihedral angle-sampling buildup procedure can generate many millions of loop
candidate structures. These loops have already been screened to ensure no steric clashes and
sufficient space for the side chains. Then we use the K-means clustering algorithm to select
representative loop candidates.
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For each loop representative, the loop side chains are then added and optimized. The
sampling of single side chain conformations was accomplished by using a highly detailed
(10° resolution) rotamer library constructed by Xiang & Honig from a database of 297
proteins.31 This library contains, for example, 2086 rotamers for lysine. The additional
computational expense of such a detailed library was tolerated in order to ensure adequate
sampling. In addition, the expense was mitigated by pre-screening the rotamers using only
hard sphere overlap as a criterion, allowing many rotamers to be excluded before performing
any energy evaluations. All loop side chains are initially built on to the fixed backbone in a
random rotamer state (each side chain is randomly picked from its pre-screened clash-free
rotamer sets), and then each side chain in the loop is optimized one at a time, holding the
others fixed. Here the optimization means choosing the side chain rotamer with lowest
energy. The procedure is iterated to convergence, that is, the optimization stops until no side
chain(s) changing rotamer states compared to the previous iteration. The very details can be
found in our previous paper.17

After convergence is achieved, each representative loop is completely energy minimized in
Cartesian coordinates to (relax the backbone and side chains). Finally, side chain
optimization described above is applied again (this time with a different backbone structure).
Energy is calculated for the final structure of each representative loop. The loop with the
lowest energy is chose as the predicted structure.

There are two aspects that contribute to the success of the sampling algorithm in our
previous methodology. The first refers to the way that a single loop prediction builds up
many candidates, screens and clusters them, and picks out the representatives for scoring
and ranking; the second refers to a full loop prediction that utilizes a variety of ways to
sample the low-energy region of conformational space via many PLOP calls in which the
options for each execution vary. The second aspect plays a greater role as loops get longer.

An all-atom force field energy with implicit solvent is calculated for each sampled loop, and
the loops are then ranked by energy. The energy is calculated using the Optimized Potential
for Liquid Simulations (OPLS) all-atom force field18–20, the Surface Generalized Born
(SGB) model of polar solvation21, an estimator for the nonpolar component of the solvation
free energy developed by Gallicchio et al.22, and a number of correction terms as detailed in
Ghosh et al.21 and in Jacobson et al.20 In addition, Zhu et al.12 have also incorporated an
additional hydrophobic term adapted from the ChemScore23 scoring function, which has
been successfully used to describe the hydrophobic contribution to the binding free energy
between ligands and protein receptors. The hydrophobic term appears to approximately fix a
major flaw in SGB solvation model described above.

Crystal packing is included. The simulation system consists of one asymmetric unit and all
atoms from other surrounding symmetric units that are within 30 Å. Every copy of the
asymmetric unit is identical at every stage of the calculation.

Dipeptide Sampling Method
In this work, we develop a dipeptide segment based sampling algorithm, while the previous
single residue based sampling algorithm is still kept as an important supplement. The single
residue based dihedral angle sampling (referred to as single residue sampling) algorithm has
achieved great success for a wide range of loops no longer than 10 residues in PLOP.
However, as loops get longer, the power of the single residue sampling method decreases
gradually: The number of generated loop conformations increases explosively and a lot of
redundancies are generated.6,12 This is easy to understand, because the relation between
dihedrals and backbone coordinates is nonlinear, a number of combinations of backbone
dihedrals can lead to a very similar loop conformation. For example, essentially any
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backbone dihedral can be rotated by a large amount and the rest of the loop can stay very
similar if there are a series of small compensating changes in the remaining dihedrals. This
problem becomes worse as loops get longer. As a result, the following two scenarios have
been frequently seen, when predicting loops long than 13 residues. First, in the buildup stage
of a super long loop, the generated loop candidates can easily break through the minimum
limit, which is 512. For loops longer than nine residues, it could happen even when the
effective sampling resolution is rather coarse. Effective sampling resolution is a threshold to
select distinguishable backbone rotamers. PLOP starts with a high value (300°) of effective
sampling resolution and decreases gradually until the generated loops exceed the minimum
number of conformations required by the program. A lot of cases show that the minimum
can be easily broken through when the effective sampling resolution stays as high as 60° to
80°, which means only a few backbone rotamers are selected for each residue. Thus the
overall quality and variety of generated loops are very limited. Second, frequently there is a
sudden explosion of loop candidates when the effective resolution is decreased by a step (1–
10), sometimes the maximum limit (106) could be reached. Then PLOP gets stuck there,
takes forever to finish the closure and screening of loops, and often crashes the node. These
situations happen to thirteen-residue loops sometimes, but even more frequently for loops
that are longer.

A sampling algorithm that could bring down the huge number of generated loop candidates
in the buildup stages as well as increase the realized effective sampling resolution is needed
and has recently been developed in our group. The algorithm is mainly based on dipeptide
segment sampling (referred as dipeptide sampling), assisted by single residue sampling
when necessary. Dipeptide sampling is similar to single residue sampling, but differs in the
step size in torsion angle phase space. The step size of single residue sampling is (φ, ψ), and
the step size of dipeptide sampling is (φ1, ψ1, ω, φ2, ψ2). The first step is to build the
dipeptide libraries. To build the libraries, we have used a large (3799 structures), diverse
(percentage identity <30%) database of high resolution (<2 Å) protein crystal structures and
recorded every backbone dihedral angle in loop regions. The dihedral angles were recorded
in the format of sets, with each set having five consecutive dihedral angles (φ1, ψ1, ω, φ2,
ψ2). That is, each set is corresponding to a dipeptide segment, and the set is labeled by the
name of the dipeptide it corresponds to. We only deal with the first twenty genetically
encoded amino acids (not include Selenocysteine and Pyrrolysine) in our program, so totally
there are 400 (20 by 20) different dipeptides, such as Ala-Lys, Pro-Gly and Thr-Phe, etc.
Then all sets were attributed to one of the 400 groups, according to their labels. The angles
in each group were then binned every 5°, and all (φ1, ψ1, ω, φ2, ψ2) combinations appeared
in the group were included in the backbone library. The resultant 400 libraries, at 5°
resolution, have 84711 sets of (φ1, ψ1, ω, φ2, ψ2) combination. That is, we have added
84711 backbone rotamers to our previous libraries which only have 747 rotamers for Gly,
215 rotamers for Pro, and 866 rotamers for all other residues. The number of dipeptide
rotamers in each library is given in Table I.

In the single residue libraries, the backbone library shared by 18 residues (except Gly and
Pro) has 866 rotamers, while the average number of rotamers of the dipeptide libraries in
Table I is 211. Actually, only three dipeptide libraries (Gly-Gly, Gly-Asp and Asp-Gly)
have more than 866 rotamers. The reason for less rotamers in most of the dipeptide libraries
is pretty obvious. A large number of conformations for any two consecutive residues
generated by the single residue sampling method have steric clashes between the two
residues (including their side chains), and such sterically infeasible conformations have been
excluded naturally when building the dipeptide libraries. In single residue sampling method,
the correlation between side chains of two consecutive residues are not considered,
remembering that 18 different residues share one backbone library, though obviously
tryptophan only needs a much smaller library than alanine; furthermore, during the buildup
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stage, the steric clash screening on side chain is accomplished through a rather coarse
approach, by testing all conformations in a 30° side chain rotamer library, until one is found
that is free of steric clash, with other side chains of the loop not included in these screens.
The dipeptide libraries carry more information than our single residue libraries. Using the
dipeptide libraries makes the sampling more efficient: it greatly brings down the huge
number of the generated loop candidates in buildup stages; at the same time, the realized
effective sampling resolution has also been improved a lot.

The 5° resolution keeps unchanged in the dipeptide libraries, in order to make sure the
discretization error does not fundamentally limit the achievable accuracy. The high
resolution offers a solid foundation for the accuracy of this method.

Effective sampling resolution still plays an important role in the new sampling algorithms.
There is a slightly change in the effective sampling resolution by the implementation of
dipeptide sampling. The old relation obeyed by filtered states is: Δφ2 + Δψ2 > Reff

2, while
the new relation is: (Δφ1)2 + (Δψ1)2 + (Δω)2 + (Δφ2)2 + (Δψ2)2 > Reff

2. With the same
effective sampling resolution Reff, the constraints on φ1, ψ1, ω, φ2 and ψ2 are tighter than
that on φ and ψ.

Our buildup procedure continues independently from both sides of the loop up to the Cα
atom on the closure residue, the length (in residues) of a half loop can be even or odd, but
the step size of dipeptide sampling is fixed at two residues. If a half loop has odd length,
then the residue at the end of the half loop, that is, the residue next to the closure residue will
be left aside. There are several ways to solve this problem. In this work, when constructing a
half loop with odd length, we choose to use the single residue sampling method to add the
last residue.

The following three stages in a single loop prediction, that is, closure, clustering and
scoring, are similar to that in our previous work6,12. The only difference is the method of
adaptively increasing the number of clusters in K-means clustering algorithm24,25. For K-
means algorithm, the number of clusters must be prespecified. We empirically use four
times the number of loops residues as the default value of number of clusters. Sometimes,
after the initial clustering, there are some clusters that have a much larger spread (as judged
by intra-cluster RMSD) than others. At this time, a simple method to adaptively increase the
number of clusters is used. Clusters with a large spread are split into three new clusters and
the clustering algorithm is run again with the new clusters added. This procedure can be
applied iteratively until the maximum number of cluster (sets to be four times the number of
loop residues plus 30) is reached.

Test Set
Loop length verses frequency of loops with the length appeared in native proteins is shown
in Figure 2. Statistics are calculated from ~4000 low sequence identity (<30%), high quality
(<2 Å) proteins structures. Secondary structure assignment is done by DSSP approach, while
loops are defined as the regions outside helices and strands. The relative rareness of loops
longer than 13 residues puts a cap on the size of our test set. To using inadequately small
data sets, we try to collect as many loops as we can, with the selection criteria described
below. Finally, a test set with 89 target loops has been constructed, in which we have 36
fourteen, 30 fifteen, 14 sixteen and 9 seventeen-residue loops.

Selection Criteria
The selection criteria of our test set are similar to that we used before.6, 12 The PISCES web
server (http://dunbrack.fccc.edu/PISCES.php) from Dunbrack’s lab is used to generate the
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protein list, from which loops targets are collected. The following criteria are used to ensure
the selection of high-quality protein structures.

1. Low sequence identity. The percentage identity between any two proteins has to be
< 30%.

2. High resolution. The resolution of a structure has to be < 2.0 Å.

3. Crystal structure. Only structures obtained from X-ray crystallography are selected.

4. With both backbone and side chain information. Structures with only Cα
coordinates are excluded.

5. Low R-factor. The R-factor cutoff is set to 0.25.

6. Decent pH values. Only structures obtained under pH 6~8 are selected..

Target loops are then chosen from the proteins selected out by the above criteria. More
rigorous criteria than that in our previous work have been applied to the target loop
selection, which greatly increases the reliability of our data set.6,12 The major difference is
that we introduce the real space R-factor criterion in this work, which is a is a more
sophisticated description of structure quality than B-factor. Below we list the criteria we
used to select target loops:

1. The average temperature factor (B-factor) of atoms within the loop has to be <
35.00.

2. The real space R-factor (RSR) of any residues in a selected target loop must not be
greater than 0.200.

3. Any residue of a selected target loop must not have alternative structures.

4. The minimum overlap factor for any loop-atom has to be ≥0.70.

5. The minimum distance between any loop atom and any atom from a neutral ligand
or organic ion in the environment has to be > 4.0 Å. For a metal ion ligand, this
cutoff is 6.5 Å.

6. A selected loop must not contain any chain breaks, and the protein body must not
contain any chain breaks that are close to (in 5 residues) any end of the loop.

7. A selected loop must not contain any secondary structure content longer than 3
residues.

8. The presence of no less than four strand or helix residues on either end of selected
loop.

The employment of temperature factor, overlap factor, and real space R-factor cutoffs aims
at better quality of the structure in the loop region. It is for the same goal to filter away the
structures with chain break and alternative structures. The distance cutoff for ligands and
ions mitigates concerns as to whether the potential function is accurate for ligands and ions
that potentially interact with the loop. The goal of all criteria enumerated above is to focus
on evaluating the ability of the sampling algorithm and energy model to yield accurate loop
predictions, without considering additional issues.

RMSD Calculation
The accuracy of loop prediction is evaluated by comparing it with the native conformation
of the loop. A large variety of reasonable criteria for comparing loop conformations exist.
The RMSD can be calculated from the superposition of the whole structures excluding the
loop (“global” superimposition) or from the superimposition of the compared loop atoms
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only (“local” superimposition). In this work, our results are reported as “global” backbone
RMSDs, obtained by superimposing the body of the protein (excluding the loop) and
calculating the RMSD of the loop, using N, Cα, and C atoms in loop backbone.

Protonation States of Titratable Residues
All titratable residues are placed in their standard protonation states at pH 7.0. Instead of
sampling the protonation states or varying them under specified pH conditions, this is a good
approximation as shown by our results. However, the prediction accuracy for a small
number of cases might be affected due to such an approximation. Possible solutions have
been discussed in other works26.

RESULTS AND DISCUSSION
Overall Performance

Table II gives the summarized results obtained by our new sampling algorithm. The
methodology obtains uniformly good results for 14- to 17-residue loop data sets, with
overall average/median RMSD 1.46/0.68 Å. The median RMSD for each subset ranges from
0.67 to 1.92 Å. For 36 fourteen-residue loops, only 3 cases (8.1%) have RMSD larger than
2.0 Å. Fifteen-, sixteen- and seven-residue loop data sets have 22 out of 30 (73.3%), 11 out
of 14 (78.6%) and 6 out of 9 (66.7%) cases with RMSD below 2.0 Å. A summary of the
results is shown in Table III. Figure 3 compares the prediction loop and the native one in the
context of the full-length protein in four selected cases.

Our results clearly represent a major advance as compared to our own previous loop
prediction work, producing significantly lower median and mean RMSDs for 14 residue
loops than we reported in ref. [30] for 13 residue loops30. Direct comparison with the work
of other groups in this area, even those carrying out ab initio prediction as opposed to using
knowledge based methods, is difficult for a number of reasons. Two of the most significant
are as follows: (1) we are including crystal packing effects explicitly, whereas most other
studies do not include these effects (2) we are employing specific data sets with highly
restrictive criteria applied to filter the test cases; other methods might well perform better on
this test set than on the test sets that were actually employed by them in prior evaluations.
As our objective in this paper is to test the sampling algorithm and energy model as
carefully as possible against experiment, we believe that the use of crystal packing and
elimination of loops with problematic resolution leads to the fairest comparison of this type.
We have also run a small subset of cases, for which we determined that crystal packing
effects on the target loop are unimportant, without crystal symmetry; these results are shown
below. Explicit comparison between programs will require running these programs under
identical conditions on the identical test set, and is reserved for future publications.

Dipeptide Sampling
Considering the high accuracy of our loop prediction results, it is the dipeptide sampling
method that contributes the most significantly to the improvement. The chief problem of the
high resolution dihedral angle sampling method is that the number of generated
conformations scales exponentially with loop length, so does the computational expense of
the sampling step. For years, a lot of efforts have been made to alleviate this problem in our
group, and such effort include as effective sampling resolution and hierarchical loop
prediction algorithm with fixed stages previously developed. All these techniques mitigate
this problem to some extent. However, our loop prediction algorithm with all these
techniques still fails frequently when applied to loops longer than 13 residues.
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By switching to dipeptide sampling from single residue based sampling, our full loop
prediction algorithm shows its powerful search ability for super long loops. It generally
eliminates significant sampling errors (defined as big outliers (RMSD > 4.0 Å) with higher
energy than native structure) in our results. For our 89 cases, there are eight cases (2BWR
and 2C0H in 14-residue subset, 1ZHX, 2EAB and 3BF7 in 15-residue subset, 1DJ0 in 16-
residue subset, 3H2G and 3HUH in 17-residue subset) showing significant sampling errors,
according to an analysis of energy gaps. Further examinations are needed to exclude other
factors (such as underestimated pi-pi interactions, and protonation states misassignment) that
might cause the sampling errors.

The correlation between the two adjacent residues in dipeptide is considered in the dipeptide
libraries, so some structure information not shown in the single residue libraries is now
embedded in the dipeptide libraries. As a result, when searching through the information
rich dipeptide libraries to build up loops, a lot of redundancies generated by single residue
sampling should be removed. This is exactly what happened in our results: the huge number
of generated loop candidates is greatly reduced and finer effective sampling resolution is
achieved.

Figure 4 and Figure 5 compare the dipeptide sampling method with the single residue
sampling method in two aspects: realized effective sampling resolution and number of
generated loop candidates. 13-residue loops were selected as a test set for direct comparison
using the criteria described above. The summary of the results is shown in Table IV.

Effective sampling resolution is the threshold to select distinguishable rotamers, it is directly
related to the quality and variety of generated loop candidates. Finer realized effective
sampling resolution often implies better results. Figure 4 shows the average realized
effective sampling resolutions in each sampling stage for the 13-residue loop set, using
single residue and dipeptide sampling, respectively. In each sampling stage, when using the
dipeptide sampling method, the average realized effective sampling resolution is improved
by 25° to 45°, compared to that when using single residue sampling. One should keep in
mind that longer loops are much more difficult to predict, and usually have coarser realized
effective sampling resolution. So it is not difficult to imagine that the discrepancies in Figure
4 would be even larger if the two sampling methods were applied to loops longer than 13
residues. We chose 13-residue loops to do the comparison, simply because single residue
sampling method has terrible performance on loops longer than that length: either the
required CPU time is extremely high, or the job could crash in the middle, due to the huge
number of generated conformations.

Meanwhile, Figure 5 shows that, in each sampling stage, the average number of generated
loops for the 13-residue loop set, using single residue and dipeptide sampling, respectively.
In each sampling stage, when using dipeptide sampling method, the average number of
generated loops is only about 8–17% of that when using single residue sampling method.
Again, if the comparison in Figure 4 were made on longer loops, the improvement should be
even bigger, since the average number of generated loops increases much faster with loop
length when using single residue sampling method. With a much smaller number of
generated loops, computational cost can be dramatically reduced by using dipeptide
sampling method.

With significantly improved realized effective sampling resolution, better prediction results
have been achieved. In each sampling stage, the sampling algorithm generates many loop
candidates and ranks them according to the energy function. Several lowest energy models
are passed to the next stage, in which the lowest energy model is called the predicted
conformation of this stage. Figure 6 illustrate the average RMSD (to native) of the best-

Zhao et al. Page 10

Proteins. Author manuscript; available in PMC 2012 October 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



predicted conformations in each sampling stage, for loops with 14, 15, 16 and 17 residues,
respectively. For RMSDs of the predicted conformations in each sampling stage, there is a
clear decreasing tendency, which tells that our hierarchical scheme still works very well in
the super long loop regime. However, occasionally, the first refinement stage even gets
worse results than the previous stage (eg. first refinement stage in 17-residue loop set). The
first refinement stage puts a 4 Å Cartesian constraint on each Cα atom in the target loop,
aiming at to sample more finely in the promising region identified in the initial stage.
However, for super long loops, lowest energy conformations generated in the initial stages
have rather large RMSDs (as shown in Figure 6). A lowest energy conformation with a large
RMSD most probably stays at or close to the bottom of a basin that corresponds to a local
energy minimum, which is far from the deepest energy basin where the native stays. The
extraordinarily rugged energy surface of super long loops, the limited ability of the energy
function, combined with the constraint on Cα atoms, result in less accuracy of the predicted
structures in the first refinement stage in some loops.

About 10% of the 90 cases in our test set have either energy error or sampling error, as
shown Table III. After carefully examining the outliers, we found that pi-pi stacking
interactions are missing in several predicted loops while exist in their native conformations.
Pi-pi stacking is generally thought of as being of significance when two aromatic rings
interact in a planar geometry, but in fact, we see a wider variety of analogous interactions
when a careful analysis of protein structures is performed, including for example
interactions between a phenyl ring and the plane of the guanidium group in arginine. As a
concrete illustration, consider the 14 residue loop in the protein 2BWR (B:158–B:171, as
shown in Figure 7), the pi-pi interaction between Tyr162 and Arg167 exists in the native
loop (in cyan) are missing in the predicted structure (in magenta). It should be noted that the
traditional understanding of the enhanced energetics attributable to “pi-pi” interactions,
which is related to high level quantum mechanical electron correlation effects, may not be
the most important factor in explaining our observations and results. Empirically, what we
have found is that flat functional groups in proteins which contain double bonds (of which
benzene rings and the guanidinium side chain are examples) have a high propensity to pack
together in a stacking geometry, and that our older energy model (OPLS-AA plus the SGB
continuum solvation model) was unable to reproduce the frequency with which such
structures occur. By adding a term to the energy which rewards the stacking of these
chemical groups, we may in fact be correcting problems with the continuum solvation model
(which may not properly capture the high efficiency with which stacked geometries exclude
water from regions which cannot make hydrogen bonds effectively to water molecules).

Recently, a new energy function has been developed in our lab29, in which a number of
important changes, including an explicit pi-pi stacking interaction, have been incorporated.
We have carried out a new set of calculations on the problematic loops in our test set, using
identical sampling protocol, but replacing our old energy model with the new model. The
details of this scoring function will be described in detail in reference 29; here, we examine
its performance for our long loop data set. Importantly, no parameters have been adjusted to
improve this performance (the parametrization was carried out using a completely
independent set of individual side chain rotamer data) so the results shown here can be
considered a fair test as to whether the predictive power of the new model in high resolution
structural refinement is superior to the model we employed previously.

Many of the outliers are substantially improved in RMSD when the new energy model is
used, as shown in Table V. The new energy model eliminates most energy errors (only three
cases, 1JP4, 3BB7 and 3CSS, now exhibits RMSD greater than 2 Å when the energy gaps
are negative), and even improves some of the sampling errors (presumably by stabilizing
intermediate structures that appear in the various stages of the loop prediction process). This
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dramatic reduction in energy errors without any explicit parameter adjustment is a clear
demonstration of the superiority of the new energy model. Further work on the sampling
algorithm is clearly indicated, as a number of significant sampling errors remain, and we
plan to pursue this in future development efforts.

Different the sampling from many fragment assembly methods (e.g. the 3-residue and 9-
residue fragments in Rosetta), our method is unique based on these aspects below. First of
all, our dipeptide rotamer library was built on a large variety of high resolution protein
crystallographic structures, which not only ensures the reliability of the library but also
allows the application of our method for modeling of all different kinds of proteins, while
some fragment assembly methods build the fragments based on small proteins. Second, our
dipeptide rotamers only contain explicit information of backbone conformations while
fragments in other methods such as Rosetta contain side chain or reduced side chain
information.27 Furthermore, while fragments in many fragment assembly methods are
applied as a sliding window along the protein chain, we don’t use the dipeptide rotamers in
an overlapping fashion in a sampling at one stage. Overall, our method of dipeptide
sampling was built on a large reliable data set and could be applied for highly efficient and
accurate loop modeling.

Crystal Packing
The impact of crystal environment to polar groups on the surfaces of proteins has been
extensively discussed in previous works17,28. In this work, crystal packing was explicitly
included in our calculation in order to provide a fair comparison to the crystal structures.
Although the additional information of crystal environment could reduce the sampling space
to some extent, the calculation of loop prediction should be carried out under the same
condition as the crystallographic experiment, for the purpose to test our methodology. In
order to further understand the effect of crystal packing in our loop predictions, five 14-
residue loop cases with little or some crystal contacts were tested with the same method we
describe above except that crystal neighbors is removed. As shown in Table VI, the results
obtained without crystal packing applied are highly consistent with those with crystal
packing: the difference in predicted RMSDs ranges from 0.07 to 0.88 Å. This is a powerful
evidence to show the effectiveness of our methodology regardless of crystal packing.

Computational Costs
When using dipeptide sampling method, the average number of generated loops in each
sampling stage is less than 17% of that when using single residue sampling method (Shown
in Figure 5). With many fewer generated loop candidates, the computational cost of the new
sampling method is less expensive. Table VII compares the various statistics of
computational time for loop sets with 11–13 residues in our previous work12, and for loop
sets with 14–17 residues in this work. All calculations were conducted on the same cluster
of Intel or AMD processors in the range of 1.4GHz or 900MHZ. The computational jobs
were randomly distributed into the processors of the cluster. Despite this, there is some
difference in the performance of the various processors, but this does not affect the
qualitative analysis of our methodology. The average CPU times for 14-, 15-, 16-, and 17-
residue loops are about 9, 13, 12 and 17 days, respectively. Unsurprisingly, the dipeptide
sampling method is significantly faster than the single residue sampling method. For
example, the statistical computational times of 17-residue loops, when using the dipeptide
sampling method, are less than that of 12-residue loops with the single residue sampling
method. Previously, when effective sampling resolution decreases, sometimes PLOP gets
stuck by millions of generated conformations. The maximum time cost of the 13-residue
data set (shown in Table VII) shows how long it will take when such scenario happens:
nearly four months was used, about four times of the average. The new sampling method
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eliminates this problem. The most time-consuming case took one and a half months, only
27% more than the average.

The jobs using single residue sampling algorithm in Table V were run under a time-saving
mode. When turning the time-saving mode on, RMSDs of the generated loop conformations
in the buildup stages are not calculated. When large numbers of conformations are
generated, the RMSD calculation can be very time-consuming. For example, turning the
time-saving mode on usually can save about 20% of total computational time for 13-residue
long loops, when single residue sampling is used. In this work, the jobs were run with the
time-saving mode off. If we turn it on, another 5–10% time could be saved, considering the
averages of generated loop candidates in the buildup stages are close to half of that of the
single residue sampling method.

Most of the calculations are highly parallel (5 parallel jobs in the initial stage, 15–30 jobs in
the first refinement stage, (5–10 times (n+1)) jobs in the n-th fixed stage, 5 jobs in the
second refinement stage). In all, there are about 150–200 jobs in a full loop prediction. We
have a cluster with hundreds of processors, in average about 10 or more jobs can be run at
the same time. As a result, most of our jobs can be finished in one to three days. Another 5–
10% time can be saved if turning the time-saving mode on. In the future, we will continue to
seek a variety of methods to speed up our algorithm and make it more efficient.

Finally, one can ask the question as to how the RMSD in the calculations is reduced as a
function of the computation time that is utilized. The methods in PLOP are intended as high
resolution methods (many much faster algorithms exist, and should be used if feasible, for
example in cases with very high sequence identity in an available homologue and in the
target loop in that homology), and we therefore have not explored performance if very low
levels of CPU time are employed. Figure 8 below presents average CPU times and RMSDs
for 15 residue loops as a function of the stage of the algorithm that has been reached
(described in the text). It can be seen that there is a straightforward correlation between the
expended CPU time and the quality of the result. Achieving high accuracy results requires
relatively large amounts of CPU time as noted above. If low resolution predictions are
desired, other methods are likely more cost effective.

Conclusion
We have developed an improved sampling algorithm, which is a modification of our
algorithm described in Reference 12. By using dipeptide sampling instead of single residue
sampling, very good results for loops up to 17 residues have been achieved. When single
residue sampling method is used, there are a lot of redundancies in the generated loop
candidates, especially for long loops. A number of combinations of backbone dihedrals can
lead to very similar loop conformations, due to the nonlinear relation between dihedrals and
the backbone coordinates. The dipeptide libraries contain more information of two adjacent
residues, thus the redundancies generated by the single residue sampling method due to
ignoring the correlation between the two adjacent residues are removed. As a result, using
dipeptide sampling method can generate better results in a much more efficient way.

There is no impediment to using polypeptide (such as tripeptide, tetrapeptide and
pentapeptide etc.) libraries in addition to the buildup algorithm we are using now. With
libraries of longer polypeptide segments implemented, our algorithm will have a capability
to deal with more challenging sampling problems that appear in homology modeling.
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Program Availability
The PLOP program can be downloaded at no cost by academic users from the Web site of
Prof. Matthew Jacobson, our long time collaborator in this project. It can also be purchased
from Schrodinger, Inc. as a component of the Prime program, which contains additionally a
graphical user interface and other features added by Schrodinger. Incorporation of the latest
algorithms into the released version takes some time but there is a systematic process in
place for doing this and we expect that at some point, a version will be available for general
use containing the capabilities described in this manuscript.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.

Acknowledgments
This work was supported in part by a grant to RAF from the NIH (GM-52018). RAF is a stockholder in
Schrodinger, Inc., which distributes a commercialized version of the PLOP program, Prime, and is on the Board of
Directors and Scientific Advisory Board of Schrodinger, Inc.

References
1. Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA. Electrostatics of nanosystems: application

to microtubules and the ribosome. Proc Natl Acad Sci. 2001; 98:10037–10041. [PubMed:
11517324]

2. de Bakker PIW, DePristo MA, Burke DF, Blundell TL. Ab initio construction of polypeptide
fragments: Accuracy of loop decoy discrimination by an all-atom statistical potential and the
AMBER force field with the Generalized Born solvation model. Proteins. 2003; 51:21–40.
[PubMed: 12596261]

3. DePristo MA, de Bakker PIW, Lovell SC, Blundell TL. Ab initio construction of polypeptide
fragments: efficient generation of accurate, representative ensembles. Protein Struct Funct
Bioinformat. 2003; 51:41–55.

4. Fiser A, Do RK, Sali A. Modeling of loops in protein structures. Protein Sci. 2000; 9:1753–1773.
[PubMed: 11045621]

5. Hildebrand PW, Goede A, Bauer RA, Gruening B, Ismer J, Michalsky E, Preissner R.
SuperLooper--a prediction server for the modeling of loops in globular and membrane proteins.
Nucl Acids Res. 2009; 37:W571–574. [PubMed: 19429894]

6. Jacobson MP, Pincus DL, Rapp CS, Day TJ, Honig B, Shaw DE, Friesner RA. A hierarchical
approach to all-atom protein loop prediction. Proteins. 2004; 55:351–367. [PubMed: 15048827]

7. Michalsky E, Goede A, Preissner R. Loops In Proteins (LIP) — a comprehensive loop database for
homology modelling. Protein Engineering. 2003; 16:979–985. [PubMed: 14983078]

8. Rohl CA, Strauss CE, Chivian D, Baker D. Modeling structurally variable regions in homologous
proteins with rosetta. Proteins. 2004; 55:656–677. [PubMed: 15103629]

9. Soto CS, Fasnacht M, Zhu J, Forrest L, Honig B. Loop modeling: sampling, filtering, and scoring.
Proteins. 2007; 70:834–843. [PubMed: 17729286]

10. Spassov VZ, Flook PK, Yan L. LOOPER: a molecular mechanics-based algorithm for protein loop
prediction. Protein Engineering, Design & Selection. 2008; 21:91–100.

11. Xiang ZX, Soto CS, Honig B. Evaluating conformational free energies: The colony energy and its
application to the problem of loop prediction. Proc Natl Acad Sci. 2002; 99:7432–7437. [PubMed:
12032300]

12. Zhu K, Pincus D, Zhao S, Friesner RA. Long loop prediction using the protein local optimization
program. Proteins. 2006; 65:438–452. [PubMed: 16927380]

Zhao et al. Page 14

Proteins. Author manuscript; available in PMC 2012 October 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



13. Sellers BD, Zhu K, Zhao S, Friesner RA, Jacobson MP. Toward better refinement of comparative
models: predicting loops in inexact environments. Proteins. 2008; 72:959–971. [PubMed:
18300241]

14. Peng HP, Yang AS. Modeling protein loops with knowledge-based prediction of sequence-
structure alignment. Bioinformatics. 2007; 23:2836–2842. [PubMed: 17827204]

15. Fernandez-Fuentes N, Zhai J, Fiser A. ArchPRED: a template based loop structure prediction
server. Nucl Acids Res. 2006; 34:W173–W176. [PubMed: 16844985]

16. Felts AK, Gallicchio E, Chekmarev D, Paris KA, Friesner RA, Levy RM. Prediction of protein
loop conformations using the AGBNP implicit solvent model and torsion angle sampling. J Chem
Theory Comput. 2008; 4:855–868. [PubMed: 18787648]

17. Jacobson MP, Friesner RA, Xiang Z, Honig B. On the role of the crystal environment in
determining protein side-chain conformations. J Mol Biol. 2002; 320:597–608. [PubMed:
12096912]

18. Jorgensen WL, Maxwell DS, Tirado-Rives J. Development and testing of the OPLS all-atom force
field on conformational energetics and properties of organic liquids. J Am Chem Soc. 1996;
118:11225–11236.

19. Kaminski GA, Friesner RA, Tirado-Rives J, Jorgensen WL. Evaluation and reparametrization of
the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations
on peptides. J Phys Chem B. 2001; 105:6474–6487.

20. Jacobson MP, Kaminski GA, Friesner RA, Rapp CS. Force field validation using protein side chain
prediction. J Phys Chem B. 2002; 105:11673–11680.

21. Ghosh A, Rapp CS, Friesner RA. Generalized Born model based on a surface integral formulation.
J Phys Chem B. 1998; 102:10983–10990.

22. Gallicchio E, Zhang LY, Levy RM. The SGB/NP hydration free energy model based on the surface
generalized born solvent reaction field and novel nonpolar hydration free energy estimators. J
Comput Chem. 2002; 23:517–529. [PubMed: 11948578]

23. Eldridge MD, Murray CW, Auton TR, Paolini GV, Mee RP. Empirical scoring functions: I. The
development of a fast empirical scoring function to estimate the binding affinity of ligands in
receptor complexes. J Comput Aided Mol Des. 1997; 11:425–445. [PubMed: 9385547]

24. Hartigan, JA. Clustering alogrithms. New York: Wiley; 1975.
25. Hartigan JA, Wong MA. A K-means clustering algorithm. Applied Statistics. 1979; 136:100–108.
26. Li X, Jacobson MP, Zhu K, Zhao S, Friesner RA. Assignment of polar states for protein amino

acid residues using an interaction cluster decomposition algorithm and its application to high
resolution protein structure modeling. Proteins. 2007; 66:824–837. [PubMed: 17154422]

27. Bujnicki, JM. Prediction of Protein Structures, Functions, and Interactions. John Wiley & Sons,
Ltd; 2009.

28. Xiang Z, Steinbach PJ, Jacobson MP, Friesner RA, Honig B. Prediction of side-chain
conformations on protein surfaces. Proteins. 2007; 66(4):814–823. [PubMed: 17206724]

29. Li, J.; Abel, R.; Zhu, K.; Cao, Y.; Zhao, S.; Friesner, RA. A next generation energy model for high
resolution protein structure modeling. Submitted

30. Zhu K, Shirts MR, Friesner RA. Multiscale optimization of a truncated Newton minimizer and
application to proteins and protein-ligand complex. J Chem Theory Comp. 2007; 3:2108–2119.

31. Xiang Z, Honig B. Extending the accuracy limits of prediction for side-chain conformations. J Mol
Biol. 2001; 311:421–430. [PubMed: 11478870]

Zhao et al. Page 15

Proteins. Author manuscript; available in PMC 2012 October 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1.
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Figure 2.
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Figure 3.
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Figure 4.
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Figure 5.
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Figure 6.
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Figure 7.

Zhao et al. Page 22

Proteins. Author manuscript; available in PMC 2012 October 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 8.
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Table II

Average and median loop prediction accuracy of the new sampling algorithm, summarized by loop length.
The accuracy is measured by global backbone (N-Cα-C) RMSDs in Å

Loop length Number of cases Mean Median Standard Deviation

14 36 1.19 0.67 1.57

15 30 1.55 0.75 1.82

16 14 1.43 0.80 1.76

17 9 2.30 1.92 2.63

All 89 1.46 0.68 1.81
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