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ABSTRACT We have developed a new method
(Independent Cluster Decomposition Algorithm, ICDA)
for creating all-atom models of proteins given the
heavy-atom coordinates, provided by X-ray crystal-
lography, and the pH. In our method the ionization
states of titratable residues, the crystallographic
mis-assignment of amide orientations in Asn/Gln,
and the orientations of OH/SH groups are addressed
under the unified framework of polar states assign-
ment. To address the large number of combinatorial
possibilities for the polar hydrogen states of the
protein, we have devised a novel algorithm to de-
compose the system into independent interacting
clusters, based on the observation of the crucial
interdependence between the short range hydrogen
bonding network and polar residue states, thus sig-
nificantly reducing the computational complexity of
the problem and making our algorithm tractable
using relatively modest computational resources. We
utilize an all atom protein force field (OPLS) and a
Generalized Born continuum solvation model, in
contrast to the various empirical force fields adopted
in most previous studies. We have compared our pre-
diction results with a few well-documented methods
in the literature (WHATIF, REDUCE). In addition, as
a preliminary attempt to couple our polar state
assignment method with real structure predictions,
we further validate our method using single side
chain prediction, which has been demonstrated to be
an effective way of validating structure prediction
methods without incurring sampling problems. Com-
parisons of single side chain prediction results after
the application of our polar state prediction method
with previous results with default polar state assign-
ments indicate a significant improvement in the
single side chain predictions for polar residues.
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INTRODUCTION

Macromolecular structures determined by X-ray crys-
tallography generally cannot specify the positions of

hydrogen atoms, other than a small handful of structures
solved at unusually high resolution. This is a significant
limitation of crystal structures because ionization states
of titratable residues and the positions of polar hydrogens
(i.e, hydrogens on the ��OH group of carboxylic acid/C-
terminal end groups and NH3

þ groups on Lysine side
chains/N-terminal end groups) are often important for
understanding the structural properties, dynamic behav-
iors, and ligand binding of macromolecules. Another
related problem is that the amide groups in Gln/Asn and
the imidazole ring in His are sometimes oriented incor-
rectly because of the ambiguity caused by the similar
electron density of oxygen and nitrogen atoms. The His
side chain is particularly complicated because it has three
possible protonation states as well as ambiguity in the ori-
entation of the ring, resulting in a total of six alternative
states. One of the common characteristics possessed by
both protonation states of titratable groups and Asn/Gln/
His side chain orientations is that they both strongly
depend on, and in turn significantly impact, the hydrogen
bonding patterns in the vicinities of these residues.

Several previous studies have addressed the problem of
protonation state prediction, mainly through the calcula-
tion of effective pKa’s of titratable groups.1–8 For exam-
ple, Bashford et al.2 designed a Monte Carlo stochastic
algorithm for effective pKa calculations and applied their
method to the calculation the titration curve of the titrat-
able residues in several lysozymes with different unit cell
shapes. Baptista et al.1 have designed an extended molec-
ular dynamics algorithm by explicitly taking pKa into
consideration as a dynamic variable in the evolution of
the whole dynamic system. A recent extension of this
work by Lee et al.4 generalized the idea of k-dynamics
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into a continuous titration variable and used an implicit
model as a macroscopic description of solvent.
With respect to the Asn/Gln/His side chain v2 mis-

assignment problem, Word et al.9 have performed a very
detailed study based on an analysis of molecular contacts
including all explicit hydrogen atoms, and incorporated
their method into the REDUCE software package. Their
method, although extremely fast, addresses only side
chain orientation, and uses a very simplified scoring func-
tion only involving hydrogen bond and overlap volume.
The approach most closely related to that in the present

paper is the method developed by Hooft et al.10 which ex-
plicitly treats ionization states and crystallographic mis-
assignments in a unified framework. Their method has
been incorporated into the well-knownWHATIFmolecular
modeling program.11 The WHATIF method uses a coarse-
grained empirical hydrogen bond force field derived from
small molecule crystal structures, in contrast to the
physics-based, all-atom energy function employed here.
A second key difference is that the WHATIF method uses
knowledge of explicit waters identified in the crystal struc-
tures, whichmakes it appropriate for structure verification
but not for other modeling tasks, where this information
would be unavailable.We have instead used an implicit sol-
vation model (see below for details) to treat water, which
allows us to employ our method in protein structure model-
ing tasks such as homology modeling. In addition, explicit
water generally account for only a portion of the water in a
protein crystal, and the implicit solvent model accounts for
the effects of dielectric screening from bulk water.
In this work, we have developed a general algorithm for

assigning positions for all polar hydrogens in a protein,
given the pH. The protonation states of all titratable resi-
dues are considered: Arg, Asp, Cys, Glu, His, Lys, and Tyr
(Cys residues forming disulfide bonds are not considered,
although this can be incorporated into the methodology
fairly easily). The algorithm performs placement of polar
hydrogens for the protonated residues (including Ser, Thr,
Tyr, and the NH3

þ group of Lys), as well as the ambiguous
v2 angles for Asn/Gln/His. The union of all of the side
chains considered will be referred to as ‘‘polar residues’’
and the union of all conformations and protonation states
considered will be referred to as ‘‘polar states.’’ The energy
function is the OPLS all atom force field12–14 with SGB/
NP implicit solvation model,15,16 which has proved to be a
very effective model for all atom macromolecular model-
ing, as demonstrated in our previous works.17–20

The problem of optimizing the positions of polar hydro-
gens (including protonation states, orientations of OH/SH
groups, and side chain orientations of Asn/Gln/His) is a
very hard computational problem in principle. This is
due to the exponential scaling of the state space O(aN),
where N is the number of polar residues, and where the
number of polar states a � 2. Because of the current com-
putational bottleneck in calculating the energy functions,
especially nonbonded pairwise interactions, which scale
as O(N2), it is arguably a very challenging task to incor-
porate the effect of polar states into the computational
modeling of proteins and other macromolecules explicitly.

Our method partitions all polar residue in a given protein
(including all symmetry copies) into disjoint ‘‘independent’’
clusters. For this reason, we refer to this method as the In-
dependent Cluster Decomposition Algorithm (ICDA). The
partitioning scheme is based on the local hydrogen-bond-
ing network, and reduces the computational complexity
from O(aN) to OðNt atÞ, where t is the average size of the
cluster (which is [�]N for all test cases we have exam-
ined to date).

A critical issue in polar state assignment is the valida-
tion of assignments made by the algorithm under study;
the ‘‘right’’ answer cannot simply be read off from raw X-
ray crystallographic data, unless one is considering ultra
high resolution structures in which hydrogen positions
can be observed unambiguously. We argue later that sin-
gle side chain prediction (SSP)-prediction of each side
chain, one at a time, keeping the remainder of the protein
fixed-provides an appropriate metric for evaluating the
correctness of polar state assignments. If the assignment
is correct, and the energy model is accurate, prediction of
every side chain in the crystal environment should repro-
duce the native structure, in particular the hydrogen bond
patterns of the side chain as seen in the crystal structure.
Although some side chain predictions will in fact exhibit
errors because of problems with the energy function, one
can calculate the fraction of successful SSP predictions for
each residue type, and associate a higher success rate
with a superior assignment methodology. This argument
is elaborated in some detail in what follows. Finally, we
discuss the limitation of the current method and provide
perspectives for future improvement.

Although the paper is primarily focused on presenting
our new methodology and the results generated by it, we
have also benchmarked performance against existing
methods so as to calibrate whether or not any improve-
ment has been achieved. We compare our predicted results
with those obtained in previous work, including the hydro-
gen placement method of Hooft et al.10 and the Asn/Gln/
His flipping detection method developed by Word et al.9 as
implemented in REDUCE. In addition to explicit compari-
sons for specific residues and proteins, we evaluate SSP
accuracy for all three methods and present statistics sum-
marizing effectiveness as assessed by this metric.

METHODS
Overview

Hydrogen bond networks play a vitally important role
in determining the relative stability of alternative polar
states. In many cases, the local hydrogen bond network
can be used to unambiguously assign protonation states
or v2 orientations of side chains, even without a detailed
calculation. For example, in cases of two carboxylic acid
oxygen atoms being very close in space (distance: <2.8Å),
it is almost always the case that one of them must be pro-
tonated so as to relax the strong electrostatic repulsion
that otherwise would have been incurred. Also, for this
particular problem long-range interactions do not appear
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to play as important a role as the local hydrogen bond
network. We can therefore, as a first order approximation
(which turns out to work very well in practice as will be
shown below), assume that the polar state of a polar resi-
due depends only upon its neighboring polar residues,
based on a certain distance cutoff, and is independent of
all the other polar residue states (since the structure of the
whole protein, except for the polar hydrogens, are held
fixed, the polar state of a particular residue is completely
determined once the polar states of all the other polar resi-
dues are fixed). We may therefore optimize the whole set of
polar states by optimizing each cluster separately and
finally combining the results to yield the final prediction.
Such simple distance based cluster decomposition of

polar state space is in no way meant to completely
replace all atom energy calculations, as has been the case
for some alternative approaches,9,10 but merely serves as
an efficient pre-processing step to reduce the potentially
huge sampling of states, which is hardly tractable for cur-
rent computers. If we were to evaluate all O(aN) states in
a ‘‘brute force’’ approach (where a � 2), we would have to
evaluate the energy of the whole system many times.
However, by partitioning the set of polar residues into K
clusters each of which has roughly t members, and inde-
pendently optimizing the polar states of each cluster, we
only need to perform OðNt atÞ energy calculations. Typi-
cally we have t[�]N (in most cases the maximum cluster
size t is less than 4 using the default cutoff, see Fig. 1).
This level of effort renders the problem tractable using
realistic energy and solvation models, including geometry
optimization of the hydrogen bonded network, a feature
that has been missing from many prior methods for pKa
determination employing, for example solutions to the
Poisson-Boltzmann equation to treat solvation effects.
Our experience has been that it is difficult, if not impossi-
ble, in many cases to compare the energies of alternative
hydrogen bonding patterns without optimization of the
total energy, including solvation.
In addition, by eliminating clearly incompatible partial

polar state assignments early in the calculation, a further
reduction in sampling space can be attained. In our
method we use a tree based search approach so that once
we detect any incompatible ‘‘partial assignment’’ we im-
mediately prune an entire branch of the search tree and
avoid any further energy evaluations. This can improve
efficiency significantly in optimizing large clusters.
The final assignment of the whole protein is obtained

by combining the best assignment of each cluster. A full
energy minimization is then applied to all the polar
hydrogens to yield the final structure with the predicted
polar states assigned to the set of polar residues.
Assessing the accuracy of ICDA and related methods is

far from trivial. In the present paper, we employ single
side chain prediction (SSP) as a measure of the accuracy
of polar state assignment by various algorithms (both
ours and those of other groups). The definition of a single
side chain prediction is straightforward: all of the protein
except the side chain of the target residue is fixed, com-
plete phase space sampling of that residue is carried out,

and the resulting lowest predicted free energy conforma-
tion is compared with the experimental structure. A cru-
cial point is that, for comparison with experimental crys-
tallographic data to be meaningful, SSP must be carried
out in the crystal environment if there is any sort of in-
termolecular interaction in the native structure.

A number of variables can be examined to assess the
accuracy of the prediction, including v1 and v2 accuracy,
RMSD, and hydrogen bonding pattern. In the present pa-
per we rely principally on RMSD (more accurate than v1/
v2, less labor intensive than examination and categoriza-
tion of hydrogen bonding patterns) but similar results
would be obtained with any of the relevant measures.

Of course, some errors in SSP are due to problems with
the force field and the solvation model, and these will not
be improved by superior polar state assignment. However,
it is a reasonable hypothesis that incorrect polar state
assignment will in many if not most cases lead to errone-
ous single side chain prediction. Obvious cases are when
mismatches of donors and acceptors result from such
incorrect assignments; the example discussed in the intro-
duction, of two carbonyl oxygens being placed 2.8 Å from
each other with no intervening hydrogen, is a canonical
example. In this case, one would expect that if SSP is car-
ried out for either of the carboxylate-bearing side chains
that compose the structure, the native conformation, forc-
ing the two negatively charged atoms to approach each
other so closely, would not be formed, leading to a substan-
tial deviation in RMSD. Thus, the expectation is that
effective polar state assignment will significantly reduce
the number of errors in SSP results, when compared, for
example with SSP calculations starting with ‘‘default’’
assignments—e.g., ‘‘normal’’ protonation states for titrata-
ble residues and His/Asn/Gln conformational assignments
from the PDB file. Similarly, two methods for polar state
assignment can be compared by carrying out SSP for
structures prepared with each method, and determining
which method yields a smaller fraction of errors.

Fig. 1. Distribution of polar cluster sizes for the 30 test protein struc-
tures. The maximum cluster size is 8, with only one occurrence in our
test. The majority of clusters have sizes varying from 1 to 3.
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Ultimately, the polar state assignment process is con-
nected to the energy model, and SSP data provides a self-
consistent approach to assessing the entire machinery.
SSP involves a small enough number of degrees of free-
dom that sampling errors can be entirely eliminated, i.e. it
is possible to search the entire phase space rigorously
with a relatively modest expenditure of computation time.
A truly accurate and reliable energy model/polar state
assignment methodology will yield SSP results with few
or no errors when compared with experimental data for a
wide range of high resolution test cases in the PDB. At
present we (and, to our knowledge, other groups working
on this problem) are far from this ideal state of affairs;
nevertheless, it is possible to assess improvement in SSP
prediction as a result of addressing a particular aspect of
the problem, such as polar state assignment, and that is
what we have chosen to do in what follows.

Formal Specification of the Algorithm

Our aim is to assign a unique set of polar states to the N
polar residues in a protein, such that the overall assign-
ment is optimal energetically, i.e., the set of optimal assign-
ment Sopt ¼ fs1; s2; . . . ; sNg satisfies the following criteria:
(a) The assignment is ‘‘pairwise compatible,’’ i.e., for

each pair of predicted states: si; sj; i 6¼ j:, we have that

compatibleðsi; sjÞ ¼ true

We call any assignment S satisfying condition (a) a
compatible assignment.
(b) Sopt has the lowest energy over the space of all com-

patible assignments, i.e.,

EðSoptÞ ¼ min
S is compatible

EðSÞ

where E includes both the force field energies (including
solvation contribution) as well as a pH dependent term
(with corrections), which will be explained below.
Our algorithm proceeds as follows:

Step 1: Identify all polar residues for which
‘‘polar states’’ have to be assigned

As described in the introduction, we include the ioniz-
able residues (His, Glu, Asp, Lys, Arg, Cys and Tyr), the
side chains with ambiguous v2 angles (His, Asn, Gln), and
side chains with OH/SH groups (Tyr, Cys, Ser, Thr). Here
we do not address the assignment of end groups, because
they are generally disordered and rarely of interest.

Step 2: Partition the set of all polar residues
into independent clusters

This step raises the issue of how to define the ‘‘independ-
ent clusters.’’ Here, on the basis of extensive observation of
the data from the native structures, we choose a simple
distance criterion to partition the polar residues into clus-
ters. Given a pair of polar residues, if there is at least one
pair of nonhydrogen side chain atoms (interaction between

backbone and side chain polar atoms will be considered in
subsequent steps) from the two residues respectively lies
within a specified distance cutoff Dc, we will call such a
pair of residues a pair of neighbors. A cluster is thus de-
fined as a maximal collection of such neighboring polar res-
idues, i.e., it cannot be expanded by adding another polar
residues into the cluster. Note that in considering the
neighbor relations of residue i and j, all the symmetry cop-
ies of i and j in the crystal are also explicitly taken into con-
sideration, to account for the crystal packing effects, which
plays a non-negligible role in determining the structural
properties especially for surface polar residues20. The ‘‘self-
interactions,’’ i.e., interactions between the two symmetry
copies of the same residue (e.g., a carboxylic acid dimer in
‘‘resonance’’) are considered separately during the compati-
bility checking step.

The partition of polar residues can be implemented
using a standard graph theory algorithm. More specifi-
cally, we construct an undirected graph G ¼ (V, E) for the
given protein molecule such that the set of vertices of the
graph represent the polar residues. An edge is assigned
between vertex i and j if and only if residue i and j are
neighbors, as defined earlier. Vand E are the set of vertices
and edges respectively. The partitions will then be found
with a standard Depth First Search (DFS) traversal algo-
rithm.21 The independent cluster decomposition scheme is
depicted in Figure 2.

The cutoff distance Dc is an adjustable parameter in
our implementation of the algorithm. It determines the
size of a cluster. Large clusters will definitely result in
more extensive search in subsequent sampling steps,
thereby demanding more computations, while too many
small clusters would be unlikely to recover the hydrogen
bond interactions as most of the interacting clusters

Fig. 2. Illustration of the idea of independent cluster decomposition.
All polar residues are partitioned into disjoint clusters according to the
hydrogen bonding equivalence relations, and each cluster is optimized
independently, i.e., the polar state of any particular polar residue only
depends on those polar residues belonging to the same cluster as it.
[Color figure can be viewed in the online issue, which is available at
www.interscience.wiley.com.]
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would be treated as independent. Here we set Dc ¼ 3.1 Å,
which is a more or less standard hydrogen bond distance
cutoff. In fact, this cutoff works quite well in practice in
terms of the balance between sensitivity of inter-residue
interactions and computational efficiency, as demonstrated
in numerous tests that we have performed (data not
shown). In future work the use of a single cutoff value can
likely be improved, by defining the cutoff to be specific to
each pair of partners in the hydrogen bonding interaction.

Step 3: Discretization of polar hydrogen positions

Each of the polar residues is then assigned a fixed set of
states, on the basis of the alternative polar forms it can
exist in. For most titratable residues as well as Asn/Gln
there are just 2 states, corresponding to the protonated/
deprotonated forms, or the two side chain flipping states.
For His there are 6 states (3 tautomeric forms and 2 con-
formational flips of the ring). However, for protonated
states with rotatable polar hydrogens (i.e., hydrogens on
the hydroxyl group of Asp, Glu, and Tyr; the SH group of
Cys; and the Lys amine group), we must also specify the
angular position of the polar hydrogens in order to
uniquely determine the ‘‘polar state’’ of the residue. Here
we expand the protonated states via discretization of the
polar hydrogen positions, such that the original protonated
state will be split into a set of ‘‘child states,’’ each corre-
sponding to a polar hydrogen position. The way we discre-
tize the polar hydrogen positions here is to assign a set of
hydrogen ‘‘rotamer’’ states such that each state corre-
sponds to an alternative hydrogen bond based on proximity
of neighboring heavy atoms. Finally, there is a state corre-
sponding to the ‘‘solvated state,’’ in which no hydrogen
bond is made to any other protein atoms and contacts only
water. Each of these initial child states is then split into
two states by perturbing the rotation angle around the
bond axis by �158, to allow for the possibility of minor
deviation from the perfect hydrogen bond directions. Thus,
for example, for a polar hydrogen which can potentially
make 4 alternative hydrogen bonds with its 4 different
neighbor heavy atoms, we will end up expanding the proto-
nated state into 9 child states; adding in the deprotonated
state, there will be 10 polar states altogether to sample.

Step 4: Check the compatibility between pairs
of polar states for each cluster

For each cluster, the compatibility table for a pair (i, j) of
interacting residues is N times M if there are N possible
states of residue i and M possible states of residue j. Each
entry is either a 1 or a 0. A 1 indicates that the two states
are compatible; a 0 indicates that they are incompatible. In
the computational representation, each entry of the com-
patibility table only needs to be represented by a single bit.
The compatibility test is based on whether there is any

‘‘violation of physical sense.’’ Basically, for a given state,
if two atoms carrying like-charges are in close contact
(e.g., an O��O or N��N pair within a distance less than
2.8 Å), without a hydrogen atom lying in between, which
would indicate a clear sign of incompatibility.

Step 5: Independent prediction of polar states
for each independent cluster

This turns out to be the most computationally intensive
part of the algorithm as a large number of energy evalua-
tions are needed, which is far from a trivial calculation
since we are using an all atom force field plus implicit sol-
vation. In addition to the decomposition into independent
clusters as explained earlier, which makes it only neces-
sary to enumerate the energy states for each independent
cluster separately, we further reduce the computation
time via an efficient tree pruning approach. Basically, for
a given cluster, the state of each member residue is eval-
uated in a tree-based process. Each polar residue would
then correspond to a node of the tree, with each alterna-
tive state assignment as a separate branch. The tree
grows in a top-down manner. Once a leaf is reached, a
new set of polar state assignments is obtained by follow-
ing the unique path from the root of the tree (which is
the first residue to be evaluated) down to this leaf node,
and the energy of the system is evaluated with the given
assignment. The pruning occurs if, during any stage of
the assignment, an incompatibility of the assignment of
the current residue with a previous assigned residue is
detected. At this point, the whole branch from that node
down to the leaf is pruned, thereby eliminating the need
to evaluate the energy of all state combinations contain-
ing that incompatible assignment. Finally, states surviv-
ing the pruning process are evaluated via local minimiza-
tion of the total energy model (force field plus solvation),
and the states are then ranked according to energy. The
minimization minimally perturbs the hydrogen atom
positions but can significantly change the energy. Note
that, although the polar side chains are clustered accord-
ing to their local interactions, the energy evaluations
(including the Coulomb electrostatic term and the solva-
tion free energies) are performed over the entire protein,
without any distance cutoff.

At the end of this step, we end up with a list of all (po-
lar) residue state assignments, ranked by energy from
lowest to highest. We then take the one with the lowest
energy as the optimal assignment. Alternatively, one
could also retain more than one top ranked structures for
subsequent calculations, or use a clustering approach for
selecting representative low energy assignments. In the
present paper, however, we only consider the lowest
energy assignment for each independent cluster. In prac-
tice, the energy differences among the states can range
widely. For example, for the first 6 Glu side chains in pro-
tein 1wer, the energy differences between the best and
second best state are 26.00, 17.27, 0.38, 0.22, 2.12, and
13.94 kcal/mol.

Step 6: Combine the best assignment of each cluster
and get the overall optimal assignment of the
whole set of polar residues

After getting the optimal assignment of each cluster as
in the previous step, we finally obtain the optimal assign-
ment for all polar residues in the protein molecule. We
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then assign each residue its optimal polar states, and
relax the whole structure by a complete energy minimiza-
tion of all polar hydrogens.

Energy Function

All energy evaluations are performed using an all-atom
energy model, based upon the OPLS-AA force field and the
Surface Generalized Born implicit solvent model. The force
field and solvation model have been extensively discussed
and tested in previous publications (including their effec-
tiveness in loop and side chain prediction),17–20 and we
shall not repeat this discussion here. Compared with many
previous works addressing polar state assignment, our
force field model is highly detailed. For a particular atom
type in a given titratable residue type, the force field pa-
rameters such as the atomic radii and partial charges are
customized for each alternative ionization state, thereby
taking into explicit consideration the partial charges/vdW
radii relaxation during the proton association/dissociation
process. Detailed parameter optimization of this type is of-
ten not performed in empirical methods, which is likely to
lead to a lower degree of accuracy and robustness.

Comparing Free Energies of Different
Protonation States

An energy correction term, assigned to each protonation
state of each titratable residue, is required in order to
appropriately compare the total energies obtained from the
various protonation states. One approach to computing a
term of this type is to use a thermodynamic cycle, in which
one incorporates the gas phase deprotonation energy of the
species (which can be computed via quantum chemistry,
for example) in question and the solvation free energy of
the proton. However, neither of these quantities is known
with high precision, so we have adopted an alternative ap-
proach, which employs an experimental reference state
with a known pKa. Specifically, we compute free energy
difference between the protonated/unprotonated forms for
the blocked amino acid monomer (acetylating the N-termi-
nus and amidating the C-terminus); similar approaches
have been adopted by others, e.g. Ref. 4
The correction term is simply taken as the force field

energy difference between the protonated state and un-
protonated state of the minimized capped amino acid
monomer (including SGB solvation term). Such a correc-
tion term is calculated once and all the values are stored.
In all subsequent calculations, the stored correction terms
will be added to the energy difference between the non-
standard and standard ionization forms of each titratable
residue. There is a distinct correction term for each titrat-
able residue (with the exception of His, which has two cor-
rection terms, corresponding to the two alternative proto-
nation site Nd and Ne). For flipped states of Asn/Gln/His,
there are no correction terms. Furthermore, we have de-
veloped a set of empirical adjusting terms for correction
terms, motivated by the consideration that residues
assume different conformations in real proteins than the
conformations of the corresponding monomers we use to

find the correction terms. These adjusting terms are
optional, however, including them improves our results
significantly.

Therefore, if we take the correction term as well as the
usual pH dependent term into consideration, the energy
difference between the two ionization forms for a particu-
lar titratable residue, assuming the polar states and con-
formations of other parts of the protein being identical,
would be

DU ¼ UP �UU ¼ UP
FF �UU

FF þ 2:303kTðpH� pKamÞ
þUcorr;

where pKam is the pKa for the model compound, which is
readily available from experiment; UP

FF and UU
FF are the

force field energies for the protonated and unprotonated
form respectively (see previous section). The model pKa’s
and correction terms used are listed in Table I. These val-
ues are dominated by differences in the solvation free
energies between the protonation states, as computed
using the SGB implicit solvent model. However, a second
major contributor is the Coulombic electrostatic interac-
tions with the side chain, especially ‘‘1–4’’ interactions
(i.e., atoms separated by 3 bonds) involving the titratable
proton.

Crystal Packing

In previous work,20 we have found that crystal packing
forces can affect structural details of proteins, especially
the conformations of polar side chains on the surfaces of
proteins. To remove any uncertainty about effects of
neglecting crystal packing, and to provide a fair compari-
son with experimental crystal structures, we perform all
predictions in the crystal environment. That is, crystal
unit cells are explicitly reconstructed using the dimen-
sions and space group reported in the Protein Data Bank
files. We do not attempt to employ explicit lattice summa-
tion techniques (e.g., Ewald summation), but instead
define the simulation system to consist of one asymmetric
unit (which may contain more than one protein chain)
and all atoms from other, surrounding asymmetric units
that are within 30 Å. Every copy of the asymmetric unit

TABLE I. Model pKa Values and Free Energy
Correction Terms for all Titratable Residues

Residue Model pKa
Free energy correction

term (kcal/mol)

Arg 12.0 37.48
Asp 3.9 �23.27
Cys 8.5 60.74
Glu 4.3 �35.65
His 6.4 28.42 (HIP*); 6.58 (HIE*)
Lys 11.1 �23.95
Tyr 10.0 86.33

*The default protonation state for His is HID, which is protonated on
Nd only; HIP signifies protonation on both Nd and Ne HIE signifies
protonation on Ne only.
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is identical at every stage of the calculation; that is, space
group symmetry is rigorously enforced.

COMPUTATIONAL IMPLEMENTATION

The method is implemented in Fortran 90 and all com-
putational tests are performed on our Linux cluster with
32 nodes. All nodes are 1.4 GHz Pentium III processors.
The typical running time for a protein with 100 polar res-
idues is about 20 min. Recently, a parallel version with
MPI interface has also been developed which results in a
2–3 times speed-up of the CPU time.

RESULTS AND DISCUSSION
Overview

For this work, we performed two sets of computational
experiments to validate of our polar state assignment
algorithm (ICDA). We first present and discuss a few resi-
due-by-residue comparisons with WHATIF and REDUCE,
using data from the literature as well as data that we
have generated by running both programs on test cases
selected from the PDB. As a second part of the test, we
have applied WHATIF, REDUCE, and ICDA to an exten-
sive set of high-resolution proteins that have been used in
the single side chain prediction test, and demonstrated
that the correctly predicted polar state assignments
emerging from ICDA result in statistically meaningful
improvement of the single side chain prediction results for
polar residues, as compared to a simple default assign-
ment approach and also to results obtained from struc-
tures assigned using either WHATIF or REDUCE. We
also present some preliminary results using ICDA to im-
prove loop structure prediction. Here we just aim to offer
some anecdotal evidence of effectiveness of ICDA, instead
of providing a comprehensive investigation. This task will
be performed in a subsequent publication.

Comparison With Previous Work

We first compare ICDA with the hydrogen placement
algorithm of Hooft et al.10 as implemented in the WHATIF
software package, using test cases identified by the
authors of that package. In Ref. 10 prediction results are
presented and analyzed for the protonation states of the 2
pairs of carboxylic acids in the protein penicillopepsion
(1APT): Glu16/Asp115 and Asp33/Asp213, as well as a sin-
gle carboxylic acid Glu45. For the first 4 carboxylic acids,
none of them were predicted to be protonated, although
the author strongly believed that at least one in each pair
should. The author attributed this failure to the inappro-
priate value of penalty terms they assigned for protona-
tion, or the inappropriate treatment of the special hydro-
gen bond pattern. Using ICDA, we found that both Glu16
and Asp115 are predicted to be protonated: Glu16 on OE2
and Asp115 on OD1. The protonation of Glu16 on OE2
yields a better hydrogen bond pattern in correspondence to
the spatial vicinity of the two oxygens Glu16:OE2 and
Asp115:OD1, which are separated by a distance of only

2.94 Å. The OE1 atom on Asp115 is protonated because of
the presence of a side chain-backbone hydrogen bond pair,
the backbone oxygen being one of its own crystal copies.
For the second pair, Asp213 is predicted to protonate on
OD1, while Asp33 is left unprotonated, resulting in a good
hydrogen bond arrangement between the spatially close
oxygens Asp33:OD2 and Asp213:OD1 (distance ¼ 2.92 Å).
For Glu45, both our method and that of Hooft et al. pre-
dicted the protonation of OE2, due to the presence of its
close hydrogen bond neighbor Asn84:OD1 (distance¼ 2.53 Å).

To examine assignments for Asn/Gln/His residues, we
select 4 protein structures and compare our predicted states
for all Asn/Gln/His with those obtained using WHATIF and
REDUCE. The 4 proteins being tested are: 1b2p, 1c44,
1c52, and 1awq. The comparison results are presented in
Supplementary Materials. It can be seen that in many
(although not all) cases, the ICDA, WHATIF and REDUCE
assignments are in agreement. It should be noted that
there is no attempt being made to address the issue of po-
lar states of other residues (e.g., carboxylic acids) in
REDUCE, so the correlation effect among different polar
residues tend to be under-estimated. The question of which
results are correct in cases where there is disagreement is,

TABLE II. General Information for the Proteins
in the Test Set

PDB ID pH Number of residues

1a2y 6.5 352
1a3c 5.1 166
1akz 7.9 223
1awd 8.0 94
1awq 8.4 170
1b2p 4.7 238
1bkr 6.6 108
1brt 8.5 277
1btk 8.5 329
1c52 8.1 131
1cvl 6.4 316
1dhn 6.5 121
1edg 6.0 380
1f94 8.5 63
1ig5 6.4 75
1ixh 4.5 321
1jse 4.2 129
1kpf 6.5 111
1nox 6.0 200
1qto 5.7 122
1rcd 5.5 171
1rhs 7.6 293
1u9a 7.5 160
1wer 6.5 324
2a0b 4.1 118
2fcb 5.3 173
2ilk 6.5 155
2pth 7.5 193
3lzt 4.6 129
3vub 4.5 101

For each protein, PDB ID, crystallization pH, as well as the total
number of residues are indicated. In the case of proteins consisting
of multiple chains, the number of residues includes the residues in
all chains.
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as noted above, a highly nontrivial one; the single side
chain prediction statistics, discussed in the next subsec-
tion, represent our approach to answering this question.

Single Side Chain Predictions With Explicit Polar
State Assignment

For the single side chain prediction test, we have
selected a test suite composed of 30 globular protein crys-
tal structures from the PDB database. These proteins are
selected such that all of them have resolution <2 Å and
do not have any serious heavy atom steric clashes. These
structures vary widely in their size and crystallization
pH values. Table II lists the PDB IDs and sizes (number
of residues) along with their respective crystallization pH
values as reported in the PDB file header.
The 30-protein test suite, in addition to serving as a

test set for single side chain prediction, is also meant to
be a comprehensive suite for studying our ICDA polar
state assignment algorithm, from which a lot of charac-
teristics of the algorithms could be extracted. Figure 1
gives the distribution of the independent cluster sizes
(see Methods section). It can be clearly seen that the ma-
jority of clusters have less than 3 polar residue members,
and in fact sizes >5 are rarely seen, demonstrating that
most residues are either fully ‘‘independent’’ or connected
in relatively small interacting groups.
As explained in Methods, the single side chain predic-

tion is used here as a benchmark of our polar state pre-
diction method. We restrict our attention to the set of po-
lar residues, as defined to be the limited subset of the 11
residue types (titratable plus Asn/Gln) described previ-
ously. Based on experience, we found that the RMSD cut-
off of 1.5 Å is a suitable threshold in distinguishing
between the success/failure of single side chain predic-
tion, and serves as a more accurate measure of side chain
prediction correctness than commonly used criteria based

on accuracy of the v1 or v1þ2 angles,22,23 in consideration
of the fact that many longer side chains have more than
2 side chain v angles, such as Lys and Arg. In this work,
both the RMSD and v1/v1þ2 criteria have been used. Basi-
cally, RMSD <1Å is usually reasonable, while an RMSD
>2Å is normally thought of as problematic. Table III and
IV summarize the effect of polar state assignment on the
single side chain prediction accuracies.

One simple analysis is to determine how many residues’
SSP results were improved, left invariant, or made worse
by the ICDA assignments, as compared to the default
assignment approach discussed above. Statistics address-
ing this issue are presented in Table III. We define four
possible outcomes of carrying out default and ICDA predic-
tions: correct (RMSDs less than 1.5 Å for both predictions);
default correct, and ICDA incorrect; default incorrect, and
ICDA correct; and both predictions incorrect. As our con-
clusions are intended to be qualitative, we do not attempt
a more quantitative assessment of the alterations in struc-
ture induced by ICDA calculations. The first and fourth of
these categories indicate that there has been little change
in SSP accuracy as a result of ICDA assignment; the fourth
category presumably predominantly represents errors due
to intrinsic problems in the force field or solvation model.
The second category is most likely reflective of an error in
the ICDA model, whereas the third category indicates a
successful revision of the structure proximate to the side
chain in question. For all residues, successes outnumber
failures, typically by a substantial margin. However, the
significant number of cases falling into categories 2 and 4
imply that there is more work to do in improving both the
assignment and energy models. Nevertheless, this data
demonstrates that a reasonable start has been made.

In terms of individual residue types, we found that our
algorithm is most effective in fixing the flipping of Asn/Gln
amides and the protonation states of certain carboxylic
acids and histidines. Achieving high absolute accuracy

TABLE III. Comparison of Single Side Chain Prediction Quality Using Default Assignment and ICDA

Residue type Correct–Correct (%) Incorrect–Correct (%) Correct–Incorrect (%) Incorrect–Incorrect (%)

Asn 62.46 21.50 5.12 10.92
Gln 46.90 17.70 3.98 31.42
His 41.06 37.75 5.96 15.23
Asp 78.22 5.28 1.98 14.52
Glu 50.92 11.66 3.37 34.05
Ser 74.92 3.93 4.83 16.31
Thr 86.29 1.25 0.93 11.53
Lys 45.32 5.44 2.72 46.53
Arg 46.92 2.69 1.92 48.46
Cys 88.68 0.00 5.66 5.66
Tyr 96.46 0.51 1.01 2.02
Overall 64.05 9.20 3.15 23.59

For each polar residue type, four percentages (with respect to the total number of that particular residue in the test set) are reported: (1) Per-
centage of side chains that are correctly predicted for both the default and ICDA assignment (Correct–Correct); (2) Percentage of side chains
that are correctly predicted for ICDA assignment while incorrectly predicted for the default assignment, or the percentage of improvement
(Incorrect–Correct); (3) Percentage of side chains that are incorrectly predicted for ICDA assignment while correctly predicted for the default
assignment, or the percentage of degradation (Correct-Incorrect); (4) Percentage of side chains that are incorrectly predicted for both the
default and ICDA assignment (Incorrect–Incorrect). The advantage of the ICDA assignment over the default assignment can be seen from the
contrast between the high percentage of improvement and the low percentage of degradation.
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with the longer side chains in these categories (Gln and
Glu) appears to be quite challenging, presumably because
longer side chains have greater opportunity for finding
incorrect structures exhibiting energy errors; nevertheless,
the assignment protocol does lead to significant improve-
ments in both cases. However, the ICDA assignment has
little effect on the long flexible basic groups such as Lys
and Arg, whose side chain prediction errors are primarily
attributable to energy errors, rather than problems with
protonation states. This can be understood by the fact that
the pKa’s of Lys and Arg are usually very high (�10), it is
very rare to observe deprotonated states for these residues,
as also demonstrated by various other studies.
Based on the above observation, we shall now focus our

attention on the carboxylic acid/histidine protonation
states assignment and Asn/Gln amide mis-assignment.

Carboxylic Acid Protonation States

The protonation state of a carboxylic acid residue (Asp/
Glu) can often be determined by simple hydrogen bond

network analysis. For example, the close proximity of two
carboxylic oxygens often serves as an indication that at
least one of them must be protonated. To determine
exactly which one is to be protonated can be determined
by our all atom energy calculations of the alternative pro-
tonation patterns. In the case of the close proximity of a
carboxylic acid and a backbone oxygen (either from the
same or a different residue), it is usually the case that
the carboxylic acid is protonated on that oxygen. The
algorithm succeeds in a reasonable number of cases, but
as indicated above, there are still a nontrivial fraction of
side chains where energy errors are a serious problem.

Histidine Protonation States

Histidine is probably the most complicated among all
the polar residues considered in this work, because it
has two alternative protonation sites (Nd and Ne) as well
as the possibility of side chain v2 flipping, resulting in a
total of 6 polar states, making the prediction of histidine
side chain conformation a challenging task.

TABLE IV. Accuracies of Single Side Chain Prediction for all Test Proteins, Before and After Polar States
Assignment Using ICDA

Target

Total
polar

residue #

Without ICDA assignment With ICDA assignment

Correct
RMSD #

Correct
RMSD %

Correct
v1 %

Correct
v1,2 %

Correct
RMSD #

Correct
RMSD % Correct v1 %

Correct
v1,2 %

1a2y 176 120 68.2 80.7 71.6 135 76.7 83.5 73.9
1a3c 71 44 62.0 76.1 60.6 48 67.6 84.5 69.0
1akz 113 77 68.1 82.3 68.1 82 72.6 83.2 76.1
1awd 50 39 78.0 84.0 76.0 41 82.0 88.0 80.0
1awq 81 57 70.4 93.8 79.0 61 75.3 96.3 81.5
1b2p 110 68 61.8 82.7 66.4 78 70.9 81.8 69.1
1bkr 61 40 65.6 77.0 65.6 43 70.5 78.7 68.9
1brt 130 103 79.2 90.0 78.5 107 82.3 91.5 80.8
1btk 176 113 64.2 80.1 66.5 117 66.5 80.1 66.5
1c52 55 31 56.4 78.2 61.8 39 70.9 78.2 69.1
1cvl 151 113 74.8 86.8 78.8 124 82.1 89.4 84.1
1dhn 64 44 68.8 82.8 71.9 47 73.4 82.8 73.4
1edg 200 158 79.0 88.5 78.0 163 81.5 88.0 79.5
1f94 32 23 71.9 81.3 71.9 25 78.1 87.5 78.1
1ig5 41 21 51.2 78.0 58.5 24 58.5 80.5 63.4
1ixh 151 104 68.9 80.8 72.2 116 76.8 82.8 76.2
1jse 58 42 72.4 87.9 70.7 46 79.3 89.7 75.9
1kpf 52 38 73.1 82.7 69.2 41 78.8 84.6 80.8
1nox 79 57 72.2 91.1 75.9 57 72.2 88.6 75.9
1qto 55 34 61.8 72.7 63.6 39 70.9 78.2 70.9
1rcd 101 63 62.4 73.3 65.3 75 74.3 82.2 74.3
1rhs 141 99 70.2 85.1 77.3 102 72.3 83.0 74.5
1u9a 79 51 64.6 83.5 60.8 56 70.9 88.6 65.8
1wer 175 89 50.9 66.9 56.0 100 57.1 68.0 57.7
2a0b 50 25 50.0 70.0 54.0 31 62.0 80.0 62.0
2fcb 98 63 64.3 76.5 68.4 75 76.5 83.7 77.6
2ilk 77 44 57.1 79.2 71.4 49 63.6 80.5 70.1
2pth 75 50 66.7 76.0 60.0 56 74.7 81.3 73.3
3lzt 47 39 83.0 89.4 80.9 39 83.0 91.5 83.0
3vub 44 28 63.6 79.5 63.6 30 68.2 84.1 75.0
Overall 2793 1877 67.2 81.5 69.6 2046 73.3 83.7 73.5

For each single side chain prediction test target, the number of correctly predicted residues based on the RMSD < 1.5 Å criterion, the percent
of correctly predicted residues based on the RMSD < 1.5 Å criterion as well as the commonly used Dv1j j < 40� and Dv1;2

�
�

�
� < 40�criteria are

listed.
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As shown in Figure 3, the single side chain prediction
results improves substantially after the ICDA assignment.
Table V gives an example in which two His residues form
a cluster with a Glu. Default assignment yields very poor
SSP prediction results, while after the correction of polar
states via ICDA, the SSP results significantly improved,
as reflected in the RMSDs.

Asn/Gln Amide Group Flipping Detection

Our algorithm successfully detects and corrects a large
portion of the Asn/Gln amide group mis-assignments, which
lead to significant improvement in the SSP prediction

accuracy as shown in Figure 3. These potential mis-assign-
ments are identified either based on the incompatible
hydrogen bond pattern as explained previously or by the
all atom energy calculations. These two different levels of
methodologies complement each other and prove to be very
powerful in the successful identification of many potential
side chain flippings of Asn/Gln residues. For example, the
three residues: Gln56, Asn61 and Asn114, which belong to
different clusters in the protein 1qto, are all identified by
WHATIF to be potential amide mis-assignments. This also
leads to the poor single side chain prediction results for
these 3 residues. For the latter two residues, the mis-
assignments are identified by the obvious incompatible

Fig. 3. Distribution of single side chain prediction (SSP) accuracies (in terms of RMSD for side chain
atoms) before and after application of ICDA polar states assignment procedure for the subsets of: (a) carbox-
ylic acids (Glu, Asp); (b) histidines; (c) Asn/Gln.
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hydrogen bond patterns without any energy calculations:
for Asn61 the amide oxygen is in close contact with the
backbone oxygen of Ile57, with an interatomic distance of
2.77 Å. For Asn114, a similar scenario arises: the distance

between the amide oxygen and the backbone oxygen of
Thr12 is 2.80 Å. For both of these cases, the O��O distances
are too close, and therefore the amide oxygen must be
swapped with the nitrogen atom on the same group.
Figure 4 illustrates the Asn61 case. For Gln56, no obvious
hydrogen bond incompatibility is detected, but the energy
calculation of the two states indicates that the original
assignment is less energetically favorable than the alterna-
tive, flipped state (�6684.3 kcal/mol vs. �6695.3 kcal/mol).
The significant improvement of the single side chain pre-
dictions, as shown in Table VI, also suggests the correct-
ness of the assignments.

Table VII compares the single side chain prediction accu-
racies after the crystal structures are corrected by three
assignment schemes: ICDA, REDUCE and WHATIF. The

TABLE V. Effect of Protonation State Prediction Using ICDA for Cluster 34 in Protein 2fcb, which consists of 3
Polar Residues: Glu70, His85, and His155

Default protonation
state

RMSD of SSP with
default protonation state

ICDA predicted
protonation state

RMSD of SSP with predicted
protonation state

Glu70 Glu 2.71 Glu 0.16
His85 Hid 4.16 Hie 0.23
His155 Hid 2.21 Hip 0.13

SSP is an acronym for Single Side chain Prediction. For this cluster, a total of 180 sets of compatible states are found. The optimal solution and
the default protonation state as assigned based on the modal pKa values of amino acids are both listed. The optimal assignment yields an all
atom energy of –10,356 kcal/mol, when compared with the next and third lowest energy assignment, whose energies are –10,354.08 kcal/mol
and –10,342 kcal/mol, respectively.

Fig. 4. Illustration of the misassignment of the amide groups of
Asn61 of 1qto, and the correction of it by our ICDA assignment algo-
rithm: (a) the default (incorrect) assignment and (b) the assignment pre-
dicted by ICDA. [Color figure can be viewed in the online issue, which is
available at www.interscience.wiley.com.]

TABLE VII. Comparison of SSPAccuracies (RMSD
measure) Between ICDA, WHATIF, and REDUCE

Residue
type

Total
count

SSP accuracy (%)

Default ICDA WHATIF REDUCE

Asn 293 67.6 84.0 72.3 78.5
Gln 226 50.9 64.6 57.3 53.8
His 151 47.0 78.8 43.7 45.7
Asp 303 80.2 83.5 77.3 75.2
Glu 326 54.3 62.6 56.0 48.3
Ser 331 79.8 78.9 76.4 74.0
Thr 321 87.2 87.5 86.9 86.6
Lys 331 48.0 50.8 48.3 47.4
Arg 260 48.9 49.6 48.2 51.0
Cys 53 94.3 88.7 92.4 92.5
Tyr 198 97.5 97.0 97.5 97.5
Overall 2793 67.2 73.3 67.5 66.6

Here the prediction accuracies are broken into residue types. For
each (polar) residue, we report the total number of occurrences of the
residue type, as well as the SSP prediction accuracy (%) for default,
ICDA, WHATIF, and REDUCE.

TABLE VI. Comparison of Single Side Chain
Prediction Accuracies for the Three Asn/Gln

Residues in Protein 1qto

RMSD of SSP
with default

amide positions

RMSD of SSP
with predicted
amide positions

Gln56 1.58 0.11
Asn61 1.83 0.12
Asn114 1.83 0.18
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ICDA assignments perform significantly better in this test
than these alternatives, with a particularly dramatic effect
on histidine prediction (the most challenging case due to
the interplay of protonation states and tautomerism).
REDUCE and WHATIF do not show significant improve-
ments in the SSP test relative to the default assignments
for many of the side chains.
It should be noted that in a small fraction of cases,

ICDA assignment converts side chains for which the
default polar state assignment gave reasonable SSP
results into a case where the results are degraded. These
cases in general are due to difficulties with the energy
model, which can lead to inversion of the ranking of the
protonated and deprotonated states in unfavorable cases.
The elimination of errors of this type would obviously be
desirable, and is a priority for future work.

Effect of Crystal Packing

Crystal packing effects have been demonstrated to play
an important role in the structural details of protein con-
formation. In the current study, in order to probe the effect
of crystal packing on the polar residue states, we reran the
whole process (polar states prediction þ single side chain
optimization) on all the test cases without crystal packing
and compared with the results with the crystal packing
turned on. The effect of crystal packing can clearly be

significant as has been pointed out by us in a previous pub-
lication.20 In many cases, especially those with direct inter-
actions between residues in neighboring copies of the
asymmetric unit, the predicted polar states as well as sin-
gle sidechain conformation are dramatically different.

A notable example is Glu14 in 1a8l, which is not
included in the 30-protein test suite due to certain steric
clashes present in the native structures. Without consid-
ering the crystal environment, the side chain of Glu14
appears not to form any hydrogen bond with any other
residues and is predicted to be deprotonated. However,
considering the crystal environment, the OE2 atom is
detected to form a strong hydrogen bond with the back-
bone oxygen of PRO147, with an O-O distance of 2.52 Å,
and therefore is predicted to be protonated on the OE2.
Single side chain prediction test confirms the correctness
of the latter assignment. When ignoring crystal packing
and with Glu14 taken to be deprotonated the predicted
RMSD is 3.0 Å. When considering the crystal packing
environment in the SSP test while leaving Glu14 deproto-
nated, the results are a bit worse: the RMSD is 3.1 Å,
possibly due to the repulsion of the backbone oxygen
atom of PRO147. Only when we take crystal packing
effects into consideration in the ICDA procedure do we
get the correct answer for this case: the RMSD in the
SSP test is now 0.2 Å, with the hydrogen bond network
accurately reproduced, as shown in Figure 5.

Fig. 5. The close hydrogen bond contact between Glu14:OE2 in asymmetric unit and Pro147:O in crystal
copies in the 1a8l crystal structure, illustrating the impact of crystal packing environment on the protonation
states. The protein and its crystal copies are colored by white and purple respectively, while the two hydrogen
bond partner residues are shown with ball and stick model. To relax the strong electrostatic repulsion with
the backbone oxygen of J: Pro147 and A: Glu14 must be protonated on OE2. [Color figure can be viewed in
the online issue, which is available at www.interscience.wiley.com.]
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Effects of ICDA on Loop Prediction

The assignment of protonation states can have a signifi-
cant effect on the accuracy of loop prediction results. As we
discussed in a previous study,19 a number of loop prediction
failures can be attributed to themisassignment of protona-
tion states and therefore, we tried to filter out such cases in
our test set by restricting the crystallization pH to be near
neutral (6.5–7.5) in order to focus on the development of
the methodology for loop prediction. This test set filtering
reduces errors related to incorrect protonation state
assignments, but does not eliminate such errors com-
pletely. In our recent loop prediction experiments17 on a

set of long loop targets ranging from 11 to 13 residues, we
encountered a number of situations in which protonation
state mis-assignments were responsible for failure of the
loop prediction. Here we investigate whether using ICDA
assignment of the crystal structures could eliminate these
errors.

We have applied ICDA to a majority of the substantive
prediction failure cases (all cases with prediction global
backbone RMSD greater than 4 Å), and found that the
ICDA algorithm gave alternative protonation states in
the target loop region or neighboring amino acids for sev-
eral cases. Using the structures generated by the ICDA

TABLE VIII. Long Loop Prediction After Using ICDA

PDB Residues

Default assignment ICDA assignment

Egap (kcal/mol) RMSD (Å) Egap (kcal/mol) RMSD (Å)

1edt 93–103 74.5 5.5 4.5 0.3
1eur 87–97 �7.4 4.6 �13.2 1.7
1hnj 191–203 �47.2 8.3 �43.8 3.1

The RMSD is calculated on the loop backbone atoms after superimposing the rest protein body. The Egap means the energy difference between
predicted structure and native structure.

Fig. 6. Protonation state assignments affect prediction for 1edt. All the residues within 10 Å of the loop (res-
idue 93–103) are shown, and colored by their polar properties, i.e. green for hydrophobic (here omitted for
clarity), cyan for polar, blue for positive charged, red for negative charged, and gray for Gly. The residues whose
protonation states are changed by assignment algorithm are represented by ball and stick. The purple ribbon is
the correctly predicted loop geometry, and the orange one is the incorrectly predicted loop without ICDA proto-
nation assignment. The native structure is omitted because it is almost identical to the correctly predicted struc-
ture. [Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]
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algorithm for the loop prediction improves the results
substantially, as shown in Table VIII. One of these cases,
1edt (residues 93–103), is illustrated in Figure 6. Within
10 Å of the target loop, there are a total of 14 residues
whose protonation states are changed or v2 angles are
flipped based on the ICDA assignment algorithm. Also, His
94 in this loop region is predicted to be protonated on both
nitrogen atoms. Using the new structure yields a 0.3 Å
RMSD prediction while the standard assignment results in
a 5.9 Å RMSD prediction. In contrast to the single side
chain prediction results, no single hydrogen bond or salt
bridge appears to be responsible for the previous failure or
current success; however, it is reasonable to assume that
the ICDA hydrogen atom assignments provides a more cor-
rect description of the electrostatic environment.

CONCLUSIONS

We have developed a new method for predicting pro-
tonation states, hydrogen atom positions, and side
chain orientations of His/Asn/Gln, all of which are am-
biguous in a large majority of protein crystal struc-
tures. Two novel aspects of our methodology (ICDA)
are an independent cluster decomposition strategy to
reduce the exponential search space of polar residue
states, and the use of an all-atom physical chemistry
based energy function plus a Generalized Born implicit
solvent model.
In addition to examining anecdotal cases, the method

has been quantitatively evaluated by assessing improve-
ments in single side chain prediction, comparing with a
default assignment strategy as well as two competitive
methods, REDUCE and WHATIF. The results suggest
that ICDA represents a significant advance in the ability
to assign polar states, although it does not yet represent
a complete solution to the problem. We are investigating
several possible improvements to the current algorithm.
For example, there are quite a few heuristics in the
choice of parameters, e.g., the cutoff distance for hydro-
gen bond interaction. The neglect of long-range interac-
tions, although a good approximation to the first order, is
still a potential error in the prediction results. Another
major source of errors comes from systematic errors in
the energy functions, particularly the SGB solvation
model. This is particularly severe for basic residue groups
such as Lys and Arg, which have long flexible side chains
and possess many alternative hydrogen bond patterns.
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