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Abstract The functions of most proteins are yet to be determined. The function of an enzyme is

often defined by its interacting partners, including its substrate and product, and its role in larger

metabolic networks. Here, we describe a computational method that predicts the functions of

orphan enzymes by organizing them into a linear metabolic pathway. Given candidate enzyme and

metabolite pathway members, this aim is achieved by finding those pathways that satisfy structural

and network restraints implied by varied input information, including that from virtual screening,

chemoinformatics, genomic context analysis, and ligand -binding experiments. We demonstrate

this integrative pathway mapping method by predicting the L-gulonate catabolic pathway in

Haemophilus influenzae Rd KW20. The prediction was subsequently validated experimentally by

enzymology, crystallography, and metabolomics. Integrative pathway mapping by satisfaction of

structural and network restraints is extensible to molecular networks in general and thus formally

bridges the gap between structural biology and systems biology.

DOI: https://doi.org/10.7554/eLife.31097.001

Introduction

Problem and approach
The functions of most sequenced proteins have not been determined by experiment (Gerlt et al.,

2011; Jacobson et al., 2014; Schnoes et al., 2009). They are also difficult to predict for enzymes

with less than 60% sequence identity to characterized enzymes (Radivojac et al., 2013). The prob-

lem is much greater when seeking to predict the functions of entire metabolic pathways. Here, we

propose a computational approach that outputs an enzymatic pathway and corresponding ligands,
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given a set of potential enzymes and metabolites, using information derived by experiment and/or

computational analyses (Figure 1). The approach benefits from two considerations. First, predicting

an entire pathway may sometimes be easier than predicting individual enzymatic functions in isola-

tion, because the product of one enzyme is the substrate for the next in the pathway. Thus, even

when each enzyme’s ligand assignment is ambiguous, the ligand assignments consistent with both

enzymes may be more precise and accurate. Second, while it may be impossible to identify a path-

way using information from any single method, there may be sufficient information provided by sev-

eral methods. Our approach was inspired by the previous work using metabolite docking to multiple

enzymes and substrate-binding proteins hypothesized to participate in the pathway

(Jacobson et al., 2014; Kalyanaraman and Jacobson, 2010; Macchiarulo et al., 2004; Zhao et al.,
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Figure 1. Overview of integrative pathway mapping method. The four stages of integrative modeling are: (1) Gathering information, (2) Designing

model representation and evaluation, (3) Sampling good models, and (4) Analyzing models and information. (1) Here, the input information is gathered

from seven different sources used to determine the candidate proteins, such as co-localization and conservation in the genome neighborhood, and the

scoring restraints (docking scores from virtual screening, chemical transformations, ensemble similarity calculations of virtual screening hits from

similarity ensemble approach, DSF screening hits, metabolic endpoints, and characterized chemical reactions). (2) A pathway model is represented as a

graph composed of protein and ligand nodes. Proteins are depicted as diamonds and ligands are depicted as circles, with lines showing the node

patterns evaluated by a given type of information. (3) The combinatorial optimization problem is solved by Monte Carlo simulated annealing sampling,

consisting of randomly swapping nodes in and out of the pathway model and rearranging the edges between the nodes. (4) The final analysis stage

involves assessing the sampling, precision, and accuracy of the models.

DOI: https://doi.org/10.7554/eLife.31097.002

The following figure supplements are available for figure 1:

Figure supplement 1. Workflow for preparing input data for the L-gulonate catabolic pathway prediction.

DOI: https://doi.org/10.7554/eLife.31097.003

Figure supplement 2. Pfam genome neighborhood network (GNN).

DOI: https://doi.org/10.7554/eLife.31097.004

Figure supplement 3. NetIMP cytoscape application for pathway model visualization.

DOI: https://doi.org/10.7554/eLife.31097.005
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2013), integrative structure determination of large macromolecular assemblies (Alber et al., 2007;

Russel et al., 2012), and comparative genomics approaches for metabolic reconstructions

(Markowitz et al., 2010; Karp et al., 2016; Osterman and Overbeek, 2003; Overbeek et al.,

2005; Yamanishi et al., 2007; Ye et al., 2005).

A pathway model is represented as a graph in which the enzymes, substrates, and products are

nodes and the enzymatic reactions are edges (Figure 1). Input information, such as scores from

experimental ligand screening, molecular docking screens, and chemical similarity, is encoded as

‘network’ restraints on the identity of the nodes and edges in the pathway; these restraints are com-

bined into a scoring function. An ensemble of pathways consistent with the input information is com-

puted by a Monte Carlo algorithm that samples well-scoring pathways over possible enzymes and

metabolites. The resulting ensemble of good-scoring pathway models is assessed by its precision, its

satisfaction of the input restraints, and ideally experimental observations not used in its construction.

In addition to gauging the accuracy and precision of the models and the observations, this analysis

can identify the most informative future experiments. Because the approach ranks alternative path-

ways using all available information, it in principle produces maximally accurate, precise, and com-

plete pathway models given that information. The process of data gathering and modeling can

iterate until a satisfactory model is obtained. We suggest that the four stages of integrative pathway

mapping by satisfaction of network restraints mimic how human experts often derive and test path-

way models.

Results
The approach begins with a list of candidate proteins (here enzymes, binding proteins, and trans-

porters) and a list of endogenous metabolites that are candidate substrates or products of these

enzymes (Figure 1, Figure 1—figure supplement 1). The pathway members can be winnowed from

the entire proteome by predicting functionally related proteins using information about the genome

organization that is often available for bacterial pathways (Zhao et al., 2014). For example, for the

gulonate pathway, we identified five metabolic enzymes that are conserved in the genome neighbor-

hood of the TRAP transporter gene by constructing a genome neighborhood network

(GNN) (Figure 1—figure supplement 2); the GNN approach has been demonstrated to accurately

predict enzymes and transporters that function together in metabolic pathways based on conserved

protein families in genome neighborhoods across different species (Zhao et al., 2014). The network

restraints can then be inferred in multiple ways, exemplified by the following restraints in this study

(Figure 2A). First, for each candidate, the libraries of endogenous metabolites are docked against

either an experimentally determined structure if available or a comparative structure model

(Mysinger and Shoichet, 2010). In the case of glycolysis, 2965 sugars in the KEGG database were

screened against two crystal structures and eight comparative models for the 10 enzymes in this

pathway (Kalyanaraman and Jacobson, 2010). Second, with the top 500 metabolites docked-and-

ranked against each of the enzymes, the pathway enzymes may be linked by the similarity of their

high-ranking docked ligands, here using the chemoinformatic Similarity Ensemble Approach (SEA)

(Keiser et al., 2007; Lin et al., 2013); other related approaches can also be used (Besnard et al.,

2012; Gregori-Puigjané and Mestres, 2006; Mestres et al., 2006; Nidhi et al., 2006;

Paolini et al., 2006). The restraint can be informative because enzymes are often more likely to be

pathway neighbors when their high-scoring docked ligands resemble each other. For instance, the

top 500 metabolites of 3-phosphate dehydrogenase in the glycolysis pathway (as ranked by docking)

are dominated by six chemotypes, while the phosphoglycerate kinase has three of these chemotypes

overrepresented. This similarity is captured by the SEA E-value of 9.5 10�63, suggesting that the

observed level of similarity between the two predicted ligand lists is unlikely to have occurred by

chance (Figure 2—figure supplement 1C). Thus, the two enzymes are linked by their related pre-

dicted metabolites. Third, consideration of the enzymatic reaction types assigned to the enzymes’

superfamilies restrains the reactions in the pathway models. We require that the predicted metabo-

lites can actually be substrates or products of an enzyme, given its reaction profile extracted from its

protein family annotation. As an example, the glyceraldehyde 3-phosphate dehydrogenase is

assigned the reactions that can convert an aldehyde to a phosphate and vice versa

(Supplementary file 6). Finally, all available experimental screening hits, substrate specificities from

homology, constraints on the pathway endpoints, and other information can also be considered.

Calhoun et al. eLife 2018;7:e31097. DOI: https://doi.org/10.7554/eLife.31097 3 of 27

Research article Biophysics and Structural Biology Computational and Systems Biology

https://doi.org/10.7554/eLife.31097


Each of these considerations is added to a scoring function that ranks alternative pathway models by

assessing their consistency with the available information (Figure 2B). Thus, pathway models are pre-

ferred when they contain (i) good-scoring metabolite-enzyme pairs, (ii) pairs of neighboring enzymes

that share chemotypes, (iii) pairs of neighboring enzymes catalyzing chemical reactions that allow

the product of an upstream enzyme to be a substrate of the downstream enzyme, etc. This integra-

tive approach does not require that each type of restraint be available for each protein and metabo-

lite, nor that each restraint is accurate or precise; it only requires that the scoring function consisting

of all restraints is sufficiently accurate and precise.
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Figure 2. Representation of alternative models obtained based on consistency with input information provided for the glycolysis benchmark pathway.

(A) Example of three alternative models evaluated using different types of restraints based on modeling of the glycolysis pathway with a subset of

pathways shown. The restraints on node patterns are shown using colored lines (blue – docking restraints, green – SEA restraints, purple – chemical

transformation restraints, red – restraints with unfavorable scores). Metabolites are labeled by KEGG ID and enzymes are labeled by step in glycolysis

pathway. On the left, alternate model one is consistent with docking scores, but not with all SEA scores and chemical transformations. In the middle,

alternate model two is consistent with the docking scores and SEA scores, but not with chemical transformations. On the right, alternate model three is

consistent with docking scores, SEA scores, and chemical transformations, thus increasing the rank of the correct enzyme-substrate pairings. (B)

Alternative models shown with chemical structures. (C), Ranks of correct substrate for the corresponding enzyme at each step in the glycolysis

benchmark case. 1 – glucokinase, 2 – phosphoglucose isomerase, 3 – phosphofructokinase, 4 – fructose bisphosphate aldolase, 5 – triosephosphate

isomerase, 6 – glyceraldehyde 3-phosphate dehydrogenase, 7 – phosphoglycerate 8 – phosphoglycerate mutase 9 – enolase and 10 – pyruvate kinase.

DOI: https://doi.org/10.7554/eLife.31097.006

The following figure supplement is available for figure 2:

Figure supplement 1. Benchmark assessment for decoy and dummy enzymes.

DOI: https://doi.org/10.7554/eLife.31097.007
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Benchmarking
The method was tested by retrospectively ordering enzymes and identifying their substrates in three

well characterized pathways: glycolysis (10 enzymes) (Kalyanaraman and Jacobson, 2010), cytidine

monophosphate 3-deoxy-D-manno-octulosonate 8-phosphate (CMP KDO-8P) biosynthesis (four

enzymes), and serine biosynthesis (five enzymes) (Supplementary files 1 and 2). Docking screens of

several thousand metabolites against comparative models of the enzymes, chemical transformation

annotations of the enzymes, and the chemoinformatic SEA analysis were the input information for

mapping each pathway. Because the functions of these enzymes have been characterized, homol-

ogy-based annotations were not included as restraints for the purposes of the retrospective bench-

mark. The method successfully identified the substrates and products and correctly ordered all

pathway components in the top-scoring models (Figure 2; Supplementary files 1 and 2). The

method performed well even when the number and identity of pathway enzymes were unspecified

(Figure 3AB) or when the candidate enzymes set was incomplete (Figure 2—figure supplement

1D).

The accuracy of the predicted benchmark pathways is not limited by the lack of sampling (Fig-

ure 3—figure supplement 1), but rather by the input information (Figure 2A). Thus, the integration

of multiple types of information improves the accuracy and precision of pathway prediction

(Figure 2BC). For example, the correct substrate of the dehydrogenase in the glycolysis pathway,

glyceraldehyde 3-phosphate (G3P), is predicted to be most consistent with all the input information.

Although by docking alone, the rank of G3P is only 117 out of the 2965 metabolites docked, the

additional restraints from SEA and chemical transformations lead to the overall top ranking of G3P

(Figure 2A).

Several caveats bear mentioning. Both thorough sampling and accurate scoring become more dif-

ficult when the number of possible pathways increases (which in turn arises from a large set of candi-

date enzymes and metabolites), when some enzymes or metabolites are not in the input set, when

the pathway is long, or its length is unknown. Here, only linear pathways are sampled; thus, non-lin-

ear pathways, including cyclic pathways, are not modeled. The preparation of input information

requires manual processing. Although docking, chemoinformatics, comparative modeling, chemical

transformations, and differential scanning fluorimetry (DSF) screening information may be collected

in an automated way, the quality of information often benefits from expert choices. For example,

comparative model building can be especially time consuming when low sequence similarity struc-

tures are available for target building, and docking may require expert intervention when parameter-

ization of cofactors is necessary for correctly defining the binding site. Nevertheless, we emphasize

that once the input information is provided, its conversion into the predicted pathway is automated

and does not require human intervention. Finally, docking against modeled structures will sometimes

fail, even with the added advantages of insisting on consistency in docking hit lists. Some of these

pitfalls can be detected through testing the thoroughness of sampling (Figure 3—figure supple-

ment 1), statistical bootstrapping and jack-knifing tests (Efron, 1981), and by direct experimental

testing of predictions (Figure 4). The method becomes more robust when the pathway start and

end are defined. More generally, failures can also be reduced by introducing restraints or constraints

that limit the size of the input enzyme and metabolite sets, by improving the accuracy of the scoring

function, by limiting the sampling, or by further filtering the set of good-scoring solutions.

Prospective prediction of the L-gulonate catabolic pathway in
Haemophilus influenzae Rd KW20
L-gulonate and D-mannonate were identified as potential ligands of the TRAP solute binding protein

(SBP) from H. influenzae (Supplementary file 3), using DSF screening of a library of 189 compounds

(Vetting et al., 2015). The HiGulPQM TRAP transporter consists of three subunits, including the

periplasmic SBP HiGulP, and two membrane components HiGulQ and HiGulM. SBPs recognize sub-

strates to be imported into the cytosol by the transporter. Because these sugars are not involved in

central carbon metabolism, the observation suggested an uncharacterized pathway that converts

L-gulonate or D-mannonate into substrates for central carbon metabolism. While this pathway had

been proposed based on the DSF screening hits and genome neighborhood analysis, we sought to

predict it using integrative pathway mapping, based on the following information (Figure 1, Fig-

ure 1—figure supplement 1).

Calhoun et al. eLife 2018;7:e31097. DOI: https://doi.org/10.7554/eLife.31097 5 of 27

Research article Biophysics and Structural Biology Computational and Systems Biology

https://doi.org/10.7554/eLife.31097


TRAP

TRAP

TRAP

TRAP

TRAP

TRAP

TRAP

TRAP

TRAP

TRAP

TRAP

TRAP

OH

O

OH

O
O

OH
O

O O

O

OH
H HO

O

O

OH
OH

HO

O O

O

OH

OH

O

O
O

OH
O

 

 

 

 

 

 

HO
O

O

OH OH

O

O
OH

O

OH

OH

OH

OH

OH

HO
OH

OH

OH
O

OH

OH

OH

O

OH

O
O

OH
O

OH
O

O
O

OH
O

HO

O

O

OH
OH

OH

OH

OH

O

O

OH

OH
O

HO
O

OH
OH

OH

OH

OH
HO

O

O

OH
OH

OH

OH

O

O

HO
O

OH

OH

OH

OH

OH

HO
O

OH

OH

OH

OH

OH

HO
O

OH

OH

OH

OH

OH

HO
O

OH

OH

OH

OH

OH

HO
O

OH

OH

OH

OH

OH

HO
O

OH

OH

OH

OH

OH

HO
O

OH

OH

OH

OH

OH

HO
O

OH

OH

OH

OH

OH

HO
O

OH

OH

OH

OH

OH

HO
O

OH
OH

OH

OH

OH

HO
O

OH
OH

OH

OH

OH

HO
O

OH
OH

OH

OH

OH

OH
HO OH

OH

OH

OH
O

HO

O

O

OH
OH

OH

OH

OH

O

O

OH

OH

O

HO

O

O

OH
OH

OH OH
HO O

OH
O

HO

O

O

OH

OH

OH

HO

O

O

OH

OH

OH

HO

O

O

OH

OH

OH

HO

O

O

OH

OH

OH

HO

O

O

OH

OH

OH

HO

O

O

OH

OH

OH

HO

O

O

OH

OH

OH

HO

O

O

OH

OH

OH

HO

O

O

OH

OH

OH

HO
O O

OH
OH

OH

OH

HO
O O

OH
OH

OH

OH

OHO

HO

HO

OH

O

OH

O O

O

OH
H

HO
O

O

O

OH
OH

OH

OH

O

O

OH

OH

OH

OH

OH

OH

O

O

OH

OH
HO O

OH
HO O

OH

OH

OH

O

HO

O

O

O

OH
OH

OH

HO
O

OH
OH

OH

OH

OH

HO
O

OH
OH

OH

OH

OH

OHO

HO

HO

OH

O

OH

123 45

3 2 4 5 1

3 4 5 2 1

3 4 2 5 1

3 4 5 2 1

3 4 5 2 1

3 5 2 4 1

3 4 2 5 1

3 1 2 4 5

1 4 2 3 5

1 2 3 4 5

1 2 3 5 4

50.60

51.17

51.26

50.72

51.30

51.10

52.75

50.55

50.70

50.72

Score

52.65

15

4
4

5

4
2

2

31

1
2

4

3
5

3

5

a

b

SBP

SBP

SBP

SBP

SBP

SBP

SBP

SBP

SBP

SBP

SBP

SBP

O
P

O

HO

OH

O
P

O

HO

OH

O
P

O

HO

OH

O
P

O

HO

OH

O
P

O

HO

OH

O
P

O

HO

OH

O
P

O

HO

OH

O
P

O

HO

OH

O
P

O

HO

OH

O
P

O

HO

OH

O
P

O

HO

OH

O
P

O

HO

OH

O
P

O

HO

OH

O
P

O

HO

OH

O
P

O

HO

OH

O
P

O

HO

OH

O
P

O

HO

OH

O
P

O

HO

OH

O
P

O

HO

OH

O
P

O

HO

OH

OH
P

O

HO

O

OH
P

O

HO

O

OH
P

O

HO

O

O
P

O

HO

OH

O
P

O

HO

OH

O
P

O

HO

OH

O
P

O

HO

OH

O
P

O

HO

OH

53.17

Figure 3. 12 representative predictions of the L-gulonate TRAP-SBP catabolic pathway. (A) 12 representative pathway models of TRAP SBP pathway

predictions ordered by score, starting from the top with the best-scored prediction. The scores of the representative pathways are listed to the right of

the corresponding pathway. Pathway enzymes are labeled by numbers as follows: 1 – HiGulD, 2 – HiUxuB, 3 – HiUxuA, 4 – HiKdgK, 5 – HiKdgA. (B)

Graphical representation of an ensemble of representative pathway models. The predicted components in the ensemble of pathway models at each

Figure 3 continued on next page
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First, the position of TRAP SBP was fixed at the pathway start and its ligand was constrained to

be L-gulonate or D-mannonate; this positioning is reasonable given the TRAP’s role as a transporter.

Second, five possible pathway enzymes (a dehydratase, two dehydrogenases, a kinase, and an aldol-

ase) were identified from the genome neighborhood around the TRAP-solute-binding protein (Uni-

prot ID P71336) (Figure 1—figure supplement 2A–C, Supplementary file 2). Third, 3650 out of the

14,212 metabolites in KEGG (Kanehisa et al., 2016) were identified as the smallest unique ligand

set of substrates or products for these enzymes, based on the top scoring docking hits, which were

optimized by chemical transformations and chemical similarity (Supplementary file 2). Fourth, the

pathway was constrained to end in a metabolite of central metabolism (Supplementary file 4). Fifth,

the dehydratase (Uniprot ID P44488) was hypothesized to be a D-mannonate dehydratase because

of high sequence similarity to a characterized D-mannonate dehydratase, UxuA, in other organisms

(73% sequence identity to UxuA in E. coli) (Dreyer, 1987). Finally, as in the benchmarking, the scor-

ing function used docking, SEA E-values, and chemical transformations inferred from annotations in

Pfam (Finn et al., 2016).

The sampling algorithm found 154 unique high-scoring pathways, which clustered into 12 groups

(Figure 3AB). The best-scoring pathway, starting from L-gulonate as the ligand of the TRAP SBP,

begins with its oxidation to D-fructuronate by the first dehydrogenase (HiGulD) as the first catalytic

step (Figure 4A). Next, reduction of D-fructuronate by the second dehydrogenase (HiUxuB) produ-

ces D-mannonate; its dehydration by the dehydratase (HiUxuA) produces 2-keto-3-deoxy-D-gluco-

nate. The last few steps in the pathway model are part of a conserved Entner-Dourdoroff pathway,

ending with glyceraldehyde 3-phosphate and pyruvate, known members of central metabolism.

Even when individual restraints are excluded from the input information, the best-scoring pathway

falls within the top-scoring pathway models. For example, the same pathway has the highest score if

either the starting or end point is not restrained. If information about both starting and end points is

excluded, this pathway model drops to 15th in score.

Experimental testing of the L-gulonate catabolic pathway
The pathway model was tested experimentally in five independent ways, including by enzyme activ-

ity, X-ray crystallography, fitness growth assays of the deletion mutants, transcript analyses, and iso-

topic metabolic labeling (Figure 4A–E).

First, all enzymes had kcat/KM values larger than 103 M�1s�1 for their predicted substrates

(Figure 4B). Initially, HiGulD had negligible activity with its putative substrate L-gulonate. However,

the pathway prediction was deemed to be of sufficient quality to encourage optimization of enzyme

purification, ultimately producing an active enzyme with a kcat/KM value of 104 M�1s�1 for L-gulo-

nate. All enzymes exhibit micromolar KM values, except for HiUxuA (potentially reflecting high

D-mannonate concentrations in the cytosol). Second, the model is supported by the crystallographic

structure of the complex between the TRAP SBP protein and L-gulonate (Vetting et al., 2015)

(Figure 4C). Third, knockouts (KOs) of DHiGulP SBP and DHiGulD dehydrogenase were constructed.

DHiGulP and DHiGulD KO strains retain the ability to grow on glucose (Figure 4D, left), while they

do not grow on L-gulonate (Figure 4D, right). Fourth, all predicted pathway encoding genes, includ-

ing HiGulPQM transporter, HiGulD, HiUxuA, HiUxuB, HiKdgK, and HiKdgA, are upregulated when

H. influenzae is grown on L-gulonate or D-mannonate as the sole carbon source (Figure 4E). Fifth,

when H. influenzae was incubated with U-13C-L-gulonate during the early exponential phase, even

Figure 3 continued

position are vertically aligned to the corresponding position in the gray pathway on the top. Ligand components are shown as circle nodes with the

color corresponding to the ligand identity. Chemical structures are shown in Figure 3—figure supplement 2. Pathway enzymes are shown as diamond

nodes with the same numbering as above. Edges are colored by individual pathway model prediction. The validated prediction is shown by black

edges, enzyme nodes are colored black, and substrate/product nodes are outlined in black.

DOI: https://doi.org/10.7554/eLife.31097.008

The following figure supplements are available for figure 3:

Figure supplement 1. Sampling convergence test.

DOI: https://doi.org/10.7554/eLife.31097.009

Figure supplement 2. Chemical structures for top scoring pathway model predictions.

DOI: https://doi.org/10.7554/eLife.31097.010
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Figure 4. Catabolic pathway of H. influenzae Rd KW20. (A) The best-scoring pathway identified using the integrative mapping approach is annotated

with experimental evidence: enzyme activity (blue), fitness growth determinants (red), transcript analyses on L-gulonate media (orange), atomic structure

(green), and isotopic metabolic labeling (purple). The pathway demonstrates L-gulonate degradation into glyceraldehyde 3-phosphate and pyruvate.

Bonds undergoing changes in the subsequent steps are colored in red. (B) Kinetics of pathway enzymes on predicted substrates. (C) Crystal structure of

L-gulonate bound to SBP TRAP (PDB ID: 4PBQ). (D) Knockout growth assays of H. influenzae strains, DGulP (gulonate transporter periplasmic subunit)

and DGulD (L-gulonate dehydrogenase), when grown on D-glucose vs. L-gulonate as a sole carbon source. (E) Fold change in expression for each gene

when grown on the indicated carbon source, relative to growth on glucose. Error bars indicate one standard deviation for three biological replicates.

DOI: https://doi.org/10.7554/eLife.31097.011

Figure 4 continued on next page
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for one minute, substantial labeling of central carbon metabolites was observed, indicating rapid cel-

lular uptake and metabolism of L-gulonate (Figure 4—figure supplement 1A). In addition, time-

dependent labeling of D-fructuronate was observed (Figure 4—figure supplement 1B), further sup-

porting the first predicted step in the L-gulonate catabolic pathway (Figure 4—figure supplement

1C). Finally, identification of this pathway in H. influenzae allowed us to reconstruct the L-gulonate

and hexuronate pathways in related bacteria, mapping their conservation and variation to better

understand the evolution and function of the pathway (Figure 4—figure supplement 2).

Discussion
A number of methods have been developed to predict metabolic enzymes and pathways

(Jacobson et al., 2014; Planes and Beasley, 2008). The most common method assigns enzyme

function from its sequence similarity to a characterized enzyme (Lee et al., 2007), sometimes allow-

ing genome-scale metabolic reconstructions (Karp et al., 2016; Bordbar et al., 2014). However,

similarity-based approaches often fail when the sequence identity drops below 60%

(Radivojac et al., 2013) or when distant homologs are functionally divergent. Virtual screening used

for integrative pathway mapping, even against comparative models, can predict substrates more

accurately than homology-based transfer (Fan et al., 2009). In other cases, functional linking based

on omics data, such as gene clusters, phylogenetic profiles, and gene expression profiles, can also

guide functional prediction (Osterman and Overbeek, 2003; Overbeek et al., 1999). Methods that

integrate sequence similarity and functional linking can improve predictions (Plata et al., 2012), as

can approaches that incorporate modeling of metabolic flux with genomics-based metabolic recon-

struction to identify missing enzymes (Karp et al., 2016; Bordbar et al., 2014; Monk et al., 2014).

Several studies have combined structural information with metabolic reconstructions for genome-

scale analysis (Zhang et al., 2009; Brunk et al., 2016; Chang et al., 2010). Still, most of the meth-

ods are limited by the biochemical knowledge available and the reactions that are mapped. Studies

that deorphanize enzyme function (Irwin et al., 2005; Korczynska et al., 2014) or annotate new

pathways (Zhao et al., 2013) will enhance the accuracy and applicability of these computational

methods (Bordbar et al., 2014) as well as our integrative method. However, a key strength of our

integrative approach is its ability to predict pathways that contain previously unknown biochemical

reactions, and to assemble pathways de novo from simple and often newly predicted enzyme

activities.

Integrative pathway mapping provides a flexible and general approach to functional annotation

and pathway modeling. Because it generalizes functional annotation into the sampling of pathways

consistent with any available input information, it can use more information than alternative methods

and thus, at least in principle, produces more accurate, precise, and complete answers. For example,

while there are numerous methods for predicting functions by combining information

(Yamanishi et al., 2007; Ye et al., 2005; Plata et al., 2012; Green and Karp, 2007;

Kharchenko et al., 2006; Smith et al., 2012; Zhu et al., 2012), the generality and flexibility of inte-

grative pathway mapping allows us to combine structural information with other types of data in a

most straightforward manner. If not all bacterial pathways have enough information from the

genome context to infer the pathway enzymes, many do. Moreover, no single type of input informa-

tion is essential, provided sufficient information is available from other sources. For example, poten-

tial pathway members in prokaryotes could also be obtained from regulon analysis based on

predicting conserved binding sites for transcriptional regulators (Ravcheev et al., 2013;

Rodionova et al., 2013). Other approaches for identifying candidate pathway members are espe-

cially needed for eukaryotes, because the relationship between genome neighborhood and pathway

Figure 4 continued

The following figure supplements are available for figure 4:

Figure supplement 1. Isotopic labeling of L-gulonate as sole carbon source.

DOI: https://doi.org/10.7554/eLife.31097.012

Figure supplement 2. Comparative genomic reconstruction of L-gulonate and related uronic acid catabolic pathways and regulons in

gammaproteobacteria.

DOI: https://doi.org/10.7554/eLife.31097.013
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membership is significantly weaker in eukaryotes than in prokaryotes. For some pathways in eukar-

yotes, consideration of homology and biochemical function as well as direct experimental evidence,

such as spatial co-localization by proteomics or chemical cross-linking, could be used to identify a

set of potential protein members for pathway mapping. Thus, the integrative approach is at least in

principle not limited to prokaryotic pathways. If docking struggles to prioritize the right substrates

as top ranking hits, it often ranks the right ones well (Korczynska et al., 2014; Hall et al., 2010;

Hermann et al., 2007); insisting that the product of one step feed into the next provides a surpris-

ingly useful criterion not only for pathway membership and ordering, but also for re-prioritizing the

correct substrate from the docking candidates. The integrative approach strengthens what would

ordinarily be approximate answers by insisting on maximal possible consistency across the enzymes

and across different types of information. Because of the generality of integrative pathway mapping,

new sources of information can be incorporated, including knockout screens and known metabolic

capabilities. While not all types of input for integrative pathway mapping can be obtained automati-

cally (e.g. docking, experimental measurements), the mapping itself is entirely automated. With fur-

ther development, the framework may be applicable on a larger scale, approaching complete

genomes, but mapping topologies of networks will be more demanding as it will require more input

information and larger computation.

Materials and methods

Key resources table

Reagent type
(species) or resource Designation Source or reference Identifiers Additional information

Gene (Haemophilus
influenzae)

UxuA This paper,
pNYCOMPSC-tagless
HiUxuA vector

Uniprot:P44488 See Supplementary file 7. cloned into the
C-terminal TEV cleavable 10x-Histag
containing vector pNYCOMPS-LIC-TH10-
ccdB (C-term) such that the tag is out of frame

Gene (H.
influenzae)

GulD This paper,
pNYCOMPSC-tagless
HiGulD vector

Uniprot:Q57517 See Supplementary file 7. cloned into the
C-terminal TEV cleavable 10x-Histag
containing vector pNYCOMPS-LIC-TH10-
ccdB (C-term) such that the tag is out of frame

Gene (H.
influenzae)

KdgK This paper,
HiKdgK-pSGC-His vector

Uniprot:P44482 See Supplementary file 7. cloned into the
N-terminal TEV cleavable 6x-Histag
containing vector pNIC28-Bsa4

Gene (H.
influenzae)

UxuB This paper,
HiUxuB-pSGC-His vector

Uniprot:P44481 See Supplementary file 7. cloned into the
N-terminal TEV cleavable 6x-Histag
containing vector pNIC28-Bsa4

Gene (H.
influenzae)

KdgA This paper,
HiKdgA-pSGC-His vector

Uniprot:P44480 See Supplementary file 7. cloned into the
N-terminal TEV cleavable 6x-Histag
containing vector pNIC28-Bsa4

Gene (H.
influenzae)

GulP This paper Uniprot:P71336 See Supplementary files 8 and 9

Gene (H.
influenzae)

GulQ This paper Uniprot:P44484 See Supplementary files 8 and 9

Gene (H.
influenzae)

GulM This paper Uniprot:P44483 See Supplementary files 8 and 9

Gene (H.
influenzae)

UxuR This paper Uniprot:P44487 See Supplementary files 8 and 9

Oligonucleotide
(H.
influenzae)

UxuA, UxuR, GulD,
GulP, GulQ, GulM,
KdgK, UxuB,
KdgA, Hflu

This paper See Supplementary file 8. qRT-PCR
oligonucleotide sequences used for gene
expression profiling

Strain, strain
background
(H. influenzae
Rd KW20)

H. flu https://www.atcc.org ATCC 51907 Supplementary file 9. Genetic deletion
mutants of the putative L-gulonate
catabolism pathway in H. influenzae Rd KW20

Continued on next page
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Continued

Reagent type
(species) or resource Designation Source or reference Identifiers Additional information

Genetic reagent
(H. influenzae)

DGulP This paper Supplementary file 8. Genetic deletion
mutants of the putative L-gulonate
catabolism pathway in H. influenzae Rd KW20

Genetic reagent
(H.
influenzae)

DGulD This paper Supplementary file 8. Genetic deletion
mutants of the putative L-gulonate
catabolism pathway in H. influenzae Rd KW20

Transfected
construct (E. coli
BL21 (DE3)

BL21 (DE3) E. coli
containing the pRIL
plasmid

Stratagene Growth media contain 25 mg/mL
Kanamycin or 100 mg/mL Carbomycin and
34 mg/mL Chloramphenicol

Commercial
assay or kit

RNAprotect Bacteria
Reagent

Qiagen Cat No./ID: 76506

Commercial
assay or kit

RNeasy Mini Kit Qiagen Cat No./ID: 74104

Commercial
assay or kit

ProtoScript First
Strand cDNA
Synthesis Kit

New England BioLabs Cat No./ID: E6300S

Chemical compound,
drug

2-keto-3-deoxy-D-
gluconate

Enzymatically synthesized CAS: 17510-99-5 Enzymatic synthesis by D-mannonate
dehydratase (Uniprot ID B0T0B1). Verified
via 1H-NMR

Chemical compound,
drug

2-keto-3-deoxy-D-
gluconate-6-
phosphate

Enzymatically synthesized CAS: 884312-23-6 Enzymatic synthesis by D-mannonate
dehydratase (Uniprot ID B0T0B1) and 1 mM
2-keto-3-deoxy-D-gluconate kinase
(Uniprot ID A4XF21). Verified via 1H-NMR

Software, algorithm Integrative Pathway
Mapping

This paper https://github.com/
salilab/pathway_
mapping

The source code for the IMP program,
benchmark, input scripts files, and output
files for the benchmark and the gulonate
pathway calculations are available here(50)

Software, algorithm IMP program Russel D, et al, Putting the
pieces together: integrative
structure determination of
macromolecular
assemblies. PLoS
Biology. 10(1):e1001244, 2012

http://integrative
modeling.org

Integrative modeling

Software, algorithm MODELLER B. Webb, A. Sali. Comparative
Protein Structure Modeling
Using Modeller. Current
Protocols in Bioinformatics,
John Wiley & Sons, Inc., 5.6.1-
5.6.32, 2014.

https://salilab.org/
modeller/

Comparative modeling

Software, algorithm DOCK3.6 Mysinger MM, Shoichet BK.
Rapid context-dependent
ligand desolvation in molecular
docking. J Chem Inf Model.
50(9):1561-73, 2010.

http://dock.compbio.
ucsf.edu/

Docking

Software, algorithm Automated version
DOCK3.6

Irwin JJ, et al. Automated
Docking Screens: A Feasibility
Study. J. Med. Chem.
52(18)5712–5720, 2009.

http://blaster.
docking.org/

Docking

Software, algorithm Similarity Ensemble
Approach (SEA)

Keiser MJ, et al. Relating
protein pharmacology
by ligand chemistry.
Nat Biotechnol. 25(2):
197-206, 2007.

http://sea.bkslab.org/ SEA chemo-informatic calculations

Software, algorithm OpenEye Scientific
Software

OpenEye Scientific Software I.
OEChem. 2.0.2 ed2014.

https://www.
eyesopen.com/

In silico chemical transformations

Software, algorithm RDKit Landrum G. RDKit:
Open-source
cheminformatics.
Release_2016.03.1 ed2016

http://www.rdkit.org/ Chemical similarity calculations

Continued on next page
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Continued

Reagent type
(species) or resource Designation Source or reference Identifiers Additional information

Software, algorithm EFI-EST Gerlt JA, et al. Enzyme Function
Initiative-Enzyme Similarity
Tool (EFI-EST): A web tool for
generating protein sequence
similarity networks. Biochim.
Biophys. Acta. 1854(8):1019-
1037, 2015.

http://efi.igb
.illinois.edu
/efi-est/index.php

Genome neighborhood networks

Software, algorithm Pythoscape v1.0 Barber AE, Babbitt PC.
Pythoscape: a framework for
generation of large protein
similarity networks.
Bioinformatics. 28(21):2845-
2846, 2012.

http://www.rbvi.
ucsf.edu/
trac/Pythoscape

Sequence similarity networks

Software, algorithm Cytoscape v3.4 Shannon P, et al. Cytoscape: a
software environment for
integrated models of
biomolecular interaction
networks. Genome Res.
13(11):2498-504, 2003.

http://www.
cytoscape.org/

Network visualization

Computational methods
Integrative pathway mapping
The method computes all linear pathway models consistent with the input information, in a four-

stage process (Figure 1). First, input information has to be collected from computational and/or

experimental sources. Here, three established and convenient computational methods (i.e. molecular

docking, Similarity Ensemble Approach, and chemical transformation analysis) were selected to illus-

trate the idea of integrative pathway mapping and to benchmark it on three known pathways. In

principle, subsets of input information can be missing. Moreover, additional types of information can

be added, hopefully improving the accuracy, precision, and applicability of the approach, as illus-

trated by the gulonate pathway prediction that also depends on DSF data, pathway anchor points,

and protein homology considerations. Second, each data point is converted into a pathway restraint

via a Z-score. The score of a pathway model is then a sum of these Z-scores. Third, the good scoring

pathways are found by Monte Carlo sampling of pathways consisting of input enzymes and metabo-

lites. Finally, the good scoring pathways are analyzed. Next, we describe the four stages of integra-

tive pathway mapping in turn, using the L-gulonate catabolic pathway as an example (Figure 1).

Stage 1: Gathering information
Information for the pathway mapping cases comes from the following sources: high-throughput DSF

screening, genome context, structure-based docking screens, chemical transformations based on

Pfam classification (Finn et al., 2016), and knowledge of central metabolism. With this information in

hand, we use it to design representation, scoring, and sampling, which determine the output

models.

Stage 2: Designing pathway model representation and evaluation
For pathways of unknown length, we model pathways of each possible length independently, and

then select an optimal combination of pathway length and score. The pathway model is represented

as a linear graph, in which the molecular components are represented by nodes and the interactions

are represented by edges. In the specific case of a metabolic pathway, the two classes of molecular

components are the metabolites (substrates and products) and the proteins, which are binding pro-

teins, transporters, or enzymes converting substrates to products. In addition, we allow for the inclu-

sion of a dummy node representing an unknown and uncharacterized protein in the pathway. The

sampling space of the models is constrained by the candidate enzyme and metabolite node identi-

ties that are given as input, as well as the linearity and length of the pathway.

A sequence similarity network (SSN) and genome neighborhood network (GNN) were con-

structed using the EFI-EST webserver (Gerlt et al., 2015) and Pythoscape v1.0 software (Barber and
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Babbitt, 2012) for an anchor protein, TRAP SBPs (Uniprot ID P71336 and Uniprot ID A7JQX0), to

provide candidate pathway members (Zhao et al., 2014; Gerlt et al., 2015). The network stringency

for computing iso-functional clusters was set to an E-value cutoff of 10�120, corresponding to a

median sequence identity between proteins of ~60% (Vetting et al., 2015). At this stringency, the

majority of experimentally annotated TRAP SBPs are assigned to isofunctional clusters in the SSN.

The full GNN was clustered based on Pfam designation into individual neighborhood nodes in the

genome neighborhood of cluster 223, which included the TRAP transporter anchor

protein (Figure 1—figure supplement 2). Analysis of the GNN identified five enzyme families as

candidate pathway members, including two dehydrogenases, one sugar dehydratase, one carbohy-

drate kinase, and one aldolase. The genes associated with these families in H. influenzae are co-

localized in the genome with the TRAP SBP gene. This step can be substituted or supplemented by

any other method that identifies candidate genes, including but not limited to: (1) colocalization of

genes providing operon/metabolic context for prokaryotic proteins (Overbeek et al., 1999), (2)

coexpression measured through chip-based and RNA-seq technologies (Wang et al., 2009), (3) co-

regulation predicted by upstream DNA motifs (Pilpel et al., 2001; Rodionov, 2007), (4) protein-pro-

tein interaction studies (Bork et al., 2004; Meier et al., 2013), (5) protein fusion events

(Enright et al., 1999; Marcotte et al., 1999), and (6) phylogenetic profiles across different genomes

(Pellegrini et al., 1999).

To obtain the smallest candidate subset of KEGG that contains all metabolites needed to predict

a pathway, we considered only the metabolites with good virtual screening scores against any of the

candidate proteins as well as metabolites that can be derived from the virtual screening hits by

applying chemical transformations related to the known activities of enzymes in the relevant superfa-

milies. Therefore, the top 1000-scoring metabolites from each docking screen are added to a single

list of metabolites. Chemical transformations performed by each predicted enzyme are applied on

the top-scoring metabolites using OEChem Tools (OpenEye Scientific Software I, 2014) excluding

metabolites with no matches to the substrate motifs. Products of these reactions are compared by

RDKit Morgan fingerprints (Landrum, 2016; Rogers and Hahn, 2010) to the metabolites from the

KEGG LIGAND database (Kanehisa et al., 2016; Kanehisa and Goto, 2000). KEGG metabolites

that have a Tanimoto coefficient above 0.75 to the products are added to the list of metabolites.

This final list of metabolites contains 3650 unique ligands that are considered as the sampling space

for candidate metabolite nodes.

Scoring pathway models
Information about the pathway is encoded as pathway restraints that are summed into a scoring

function. For example, a candidate edge between a given enzyme and metabolite is restrained by a

virtual screening score for the pair. In an attempt to ‘weigh’ each piece of information optimally,

each term in the scoring function is expressed as a Z-score. Our scoring function can in principle

benefit from all available information, even when some information is not available for every enzyme

or ligand. In such cases, the corresponding terms are simply omitted from the scoring function. A

dummy node in a model contributes no score, except towards the chemical transformation term.

Thus, the scoring function (ZPathway) for ranking alternative L-gulonate pathways is a sum of Z-scores

for each type of restraint, including virtual screening (ZVS), chemical transformations (ZCT), SEA analy-

sis (ZSEA), known pathway boundaries (ZCM), high-throughput screening (ZHTS), and homology to

characterized enzymes (ZHS):

ZPathway ¼ ZVS þ ZCT þZSEA þZCM þ ZHTSþZHS

Next, we define these specific pathway restraints.

Molecular docking screens
Favorable binding interactions predicted by docking can illuminate the identity of a ligand-protein

pair. Pathway models with ligand-protein pairs that have favorable docking scores are more likely to

be correct than those that have unfavorable docking scores. For each candidate pathway protein, a

crystal structure or homology model, generated by MODELLER (Sali and Blundell, 1993;

Eswar et al., 2006), was prepared with an automated pipeline for docking (Irwin et al., 2009)

(Supplementary files 5 and 6). The proposed active site for each enzyme was identified by
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superimposing liganded structures of closely related family members or related domains; for the

enzymes considered here, identical results would have been obtained by identifying the largest cav-

ity on the structure, for example, by using program PocketPicker (Coleman and Sharp, 2010). Co-

factors (as generated by PRODRG server [Schüttelkopf and van Aalten, 2004]), metal ions, and

water molecules were included in the protein structure preparation where required for enzyme func-

tion (Irwin et al., 2005; Korczynska et al., 2014; London et al., 2014). The KEGG database

(Kanehisa et al., 2016; Kanehisa and Goto, 2000) of 14,212 unique metabolites from the ZINC

database (Irwin et al., 2012) was docked against each target with DOCK3.6 in an automated fashion

(Mysinger and Shoichet, 2010) (http://dock.compbio.ucsf.edu/). Compounds were ranked by a

physics-based scoring function that evaluates ligand-protein complementarity considering van der

Waals and electrostatic interactions, corrected for ligand desolvation (Mysinger and Shoichet,

2010; Meng et al., 1992; Wei et al., 2002). For each protein, the docking scores were converted to

Z-scores by subtracting the mean and dividing by the standard deviation of the docking scores. The

docking Z-score for the entire pathway model is the normalized sum of the Z-scores for all substrate-

enzyme and product-enzyme pairs:

ZVS ¼ �
1

N

X

N

i

Zi;

where N is the total number of enzyme-substrate and enzyme-product pairs in the pathway model.

Similar normalizations of docking scores have been described for other applications (Casey et al.,

2009).

Chemical transformations
Chemical transformations derived from protein family annotations can help identify the substrate

and product of an enzyme. These generic chemical transformations describe the enzymatic reaction

without precise knowledge of the substrate, encoding the differences between the reactant and

product on a more general level. While the full Enzyme Commission (EC) number describes the sub-

strate specificity of an enzyme, the generic chemical transformation typically corresponds to the

third level EC classification (Hatzimanikatis et al., 2005). For example, a serine acetyltransferase is a

transferase that catalyzes the reaction of converting an alcohol into an ester. Pathway models with

substrate-product pairs that match the chemical transformations are more likely to be correct than

those pairs that do not (however, the final predicted reactions reflect the totality of all restraints, not

only chemical transformation restraints).

The chemical transformation is determined from the Pfam classification (Finn et al., 2016) from the

generic chemical reaction or reactions that are conserved across members of the protein family. Multiple

chemical transformations may be considered for a single family. Relying on the library generation tool in

OEChem Tools, the in silico transformation using SMIRKS strings was performed on each metabolite, rep-

resented as a SMILES string (Supplementary files 5 and 6). SMIRKS strings encode a generic reaction

composed of a structural motif or pattern in the substrate and the corresponding pattern in the resulting

product. Using RDKit, the Tanimoto coefficient between the transformed molecule and every other

metabolite is computed based on the Morgan fingerprints, which are graph-based circular fingerprints

useful for structural comparisons, with chirality taken into account. Because no transformation is defined

for a dummy node, the Tanimoto coefficient between the substrate of the dummy node and every other

metabolite is computed. For molecules with undefined stereocenters, the highest Tanimoto coefficient

for up to 16 distinct stereoisomers was used.

Tanimoto coefficients were converted into Z-scores, similarly to the docking Z-scores. The score for

transformations is the average Z-score over the Z-scores of all substrate-product-enzyme node triads in a

model:

ZCT ¼
1

N

X

N

i

Zi;

where N is the total number of substrate-product-enzyme triads in the pathway model.
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Similarity ensemble approach
Comparison of ensembles of ligands using the Similarity Ensemble Approach (SEA) version 1.0 can

predict functionally-linked proteins from the similarity of their ligands (Keiser et al., 2007), irrespec-

tive of their sequence or structural similarities (Lin et al., 2013). It is more likely that enzymes with

high ligand similarity than enzymes with low ligand similarity are adjacent to each other in a pathway,

as exemplified by a DUDE analysis (Irwin et al., 2012) (Figure 2—figure supplement 1C). Ensem-

bles of predicted ligands can be obtained from virtual screening and used to restrain the identities

of pairs of enzymes in a pathway (Fan et al., 2013). The top 500 docking-ranked metabolites for

each enzyme were considered as the ligand ensemble. SEA E-values were calculated based on the

similarity between these top 500 metabolites for each pair of enzymes in a putative pathway. The

SEA E-value reflects the significance of the similarity between ligand ensembles for a pair of

enzymes, compared to an expectation for two similarly sized sets of randomly selected metabolites

from KEGG.

Specifically, the SEA E-value (evalue) for two consecutive pathway proteins A and B is first con-

verted into the SAB score:

SAB ¼ wAB �FAB ; wAB ¼min � log evalueð Þ; 50ð Þ

where FAB is 1

50
min wAA;wBBð Þ, modeling our confidence in the SEA analysis. Next, the SAB score is nor-

malized into a Z-score Si by subtracting the mean and dividing by the standard deviation obtained

from the distribution of SAB scores for all pairs of input enzymes, whether or not they are linked in

the pathway. Finally, the SEA component (ZSEA) of the integrative pathway score ZPathway is the Si
score averaged over all consecutive protein pairs in the tested pathway:

ZSEA ¼
1

N

X

N

i

Si

Pathway nodes and boundaries
Any known nodes of the pathway can be easily specified as constraints on the search for pathways

that satisfy all input information. In the particular case of the L-gulonate catabolic pathway, a solute-

binding protein (SBP) subunit of a TRAP transporter was identified, based on its strong sequence

similarity to the TRAP SBP family. Thus, this transporter defines the start of the metabolic pathway

to be modeled, with the rest of the pathway corresponding to intracellular enzymes acting on the

transporter’s substrate in series.

Similarly, knowledge about the endpoints of metabolic pathways can also constrain integrative

pathway mapping. For catabolic pathways of sugars, we assume that the pathway produces a com-

pound that feeds into central carbohydrate metabolism. Therefore, pathways in which the final prod-

uct is a compound in central metabolism are more likely to be correct (Supplementary file 4).

The final metabolite in the model is compared by the Tanimoto coefficient using RDKit Morgan

Fingerprints to all metabolites in central metabolism, and the maximum Tanimoto coefficient is

used. The central metabolism endpoint score is:

ZCM ¼
TC� TC

�

SD
;

where TC is the Tanimoto coefficient between the final product in the pathway model and the most

similar compound in central metabolism. TC
�

is the average and SD is the standard deviation of Tani-

moto coefficients for all comparisons between each candidate metabolite and all compounds in cen-

tral metabolism.

Differential scanning fluorimetry screening hits
In our predicted pathway, L-gulonate and D-mannonate were identified as hits for the TRAP solute

binding protein (ie, the first protein in the pathway), using screening of 189 compounds by DSF

(Vetting et al., 2015). We assume that true substrates have high chemical similarity to the screening

hits. Thus, the hits are compared by the Tanimoto coefficient using RDKit Morgan Fingerprints to

the substrate of the screened enzyme in the pathway model.
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ZHTS ¼
TC� TC

�

SD
;

where TC is the Tanimoto coefficient between the substrate in the pathway model and the hit in the

screening assay. For multiple screening hits, the maximum of the Tanimoto coefficients between the

substrate and hits is used. TC
�

is the average and SD is the standard deviation of Tanimoto coeffi-

cients between the substrate and all metabolites.

Homology to a characterized enzyme
Substrates of enzymes in the pathway model are expected to be the same or similar to substrates of

homologs that share high sequence similarity. For the L-gulonate pathway, the dehydratase has 73%

sequence identity to a characterized mannonate dehydratase in E. coli. Therefore, pathways in which

the substrate of the dehydratase is similar to D-mannonate are more likely to be correct than others.

The proposed dehydratase substrate in an evaluated pathway model was compared to D-mannonate

by the Tanimoto coefficient, using RDKit Morgan Fingerprints:

ZHS ¼
TC� TC

�

SD
;

where TC is the Tanimoto coefficient between the proposed substrate and the known substrate. TC
�

is the average and SD is the standard deviation of Tanimoto coefficients for all comparisons between

each candidate metabolite and the known substrate.

Stage 3: Sampling good models
With the scoring function in hand, the next step is to find pathway models that score well. These

models are obtained by sampling candidate metabolites and proteins at each position in the linear

pathway of a given length. We use Monte Carlo (MC) sampling by the Metropolis-Hastings algorithm

with simulated annealing (Hastings, 1970; Kirkpatrick et al., 1983). The set of MC moves includes

(i) swapping components of the same type within the graph and (ii) replacing a component in the

graph with an unused candidate component of the same type. At each MC step, if the pathway

score improves, the new model is accepted. Otherwise, the new model is accepted if a randomly

sampled number from the uniform distribution between 0 and 1 is less than the acceptance proba-

bility computed by the standard Metropolis criterion:

p¼ exp
�D

T

� �

where D is the difference between the old and new pathway scores and T is the simulated annealing

‘temperature’ parameter. The temperature drops over the course of the MC run:

T ¼ 0:3 � 0:2
N þ 0:1

where N is the MC step number normalized by the total number of MC steps. With these parame-

ters, a sampling run generally converges (Figure 3—figure supplement 1E), terminating after

5,000,000 MC steps. 1000 independent runs are performed, and the models sampled from all runs

are combined. The unique sampled models with a score above a cutoff (good-scoring models) are

considered in the analysis; the cutoff is two standard deviations below the best score. For the glycol-

ysis pathway, which is about twice as long as the other pathways, a more stringent cutoff of 1.5 stan-

dard deviations was used such that the number of good-scoring pathways is comparable to that for

the other benchmark pathways. The standard deviation is calculated from a distribution of scores of

random models. Convergence of sampling was tested by determining the fraction of unique clusters

as a function of the number of independent runs (Figure 3—figure supplement 1).

Stage 4: Analyzing models and information
The resulting ensemble of good-scoring models is analyzed in terms of its precision and satisfaction

of the restraints (Figure 2). Using hierarchical clustering in the scikit-learn python package
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(Pedregosa et al., 2011), the pathway models are clustered by a pairwise distance metric (here, the

Hamming distance). The Hamming distance is the number of positions at which the corresponding

nodes are differently divided by the number of nodes in the pathway (including both proteins and

ligands). Clusters are determined at the cutoff distance of 0.2.

A Cytoscape (Shannon et al., 2003) app, NetIMP, was written to perform visualization of the

models (Figure 1—figure supplement 3). The app takes as input a JSON formatted file of with the

IMP results, including the overall scores and the scores for the individual restraints. The app con-

structs a ‘union network’ that is the union of all models and presents it to the user. A slider is avail-

able to adjust the minimum score for inclusion in the union network. Each of the corresponding

models are shown in a results panel to the right of the network. The user can highlight the model in

the relevant network by selecting the row. Checkboxes allow the user to view the individual

restraints, including whether or not the model satisfies the restraint. NetIMP is available in the Cyto-

scape app store.

Computational cost
The total computation time depends on the numbers of enzymes and ligands considered. The com-

putationally most demanding part of integrative pathway mapping is the preparation of the input

information, not the sampling of the alternative pathways. For the three benchmark and L-gulonate

pathways, the computing times for various steps in the process are as follows. Parallelized virtual

screening of a library of ~20,000 compounds by docking each ligand against each of ~10 enzymes

takes just over an hour on a cluster of 1400 nodes. The SEA analysis takes ~15 min to

screen ~20,000 compounds against ~10 target proteins on 10 computing nodes. Finally, chemical

transformation calculations take ~1 hr for 10 enzymes on a single node. Once the inputs are in hand,

the runtime for a single Monte Carlo sampling run is approximately 1 hr on a single computing

node; a few hundred independent Monte Carlo optimizations are typically performed in parallel on

a cluster of compute nodes. In conclusion, the entire process, from preparation of inputs to the sam-

pling of the pathways, can be performed in a few hours on a cluster of a few hundred nodes.

Benchmarking
We assess our method on three known metabolic pathways, including the glycolysis pathway (10

enzymes, 2965 potential ligands), CMP KDO-8P biosynthesis pathway (four enzymes, 3336 potential

ligands), and serine biosynthesis (five enzymes, 3494 potential ligands) (Supplementary file 1). Path-

way docking was performed against crystal structures and comparative models (Supplementary file

5). The score of the pathway model is a sum of the individual Z-score terms for the docking screen,

SEA calculation, and chemical transformations. The ability to recover the true ligand-enzyme pair is

evaluated by the relative frequency of the ligand-enzyme edge occurring in the good-scoring path-

way models. Therefore, we compare the rank of the substrate or product for a given enzyme based

on the initial docking score to the rank based on the frequency of the corresponding ligand-enzyme

edge.

Benchmark assessment for decoy and dummy enzymes
The enzyme composition of a pathway is not always known with certainty, so we considered other

scenarios beyond the simple case (Figure 3AB). We tested whether or not our method could detect

the correct pathway when non-pathway enzymes, or decoys, are included in the initial candidate set

of enzymes. An additional term that considers membership in the same gene cluster is included in

the scoring function. Conserved gene clusters identified from comparative genome neighborhood

analysis (Figure 1—figure supplement 2) can be informative about the functional relationships of

genes acting in the same pathway (Overbeek et al., 1999). Pathway models with all members of a

gene cluster are more likely to be correct than those that are missing members or containing non-

members.

The set of protein pairs associated with the gene cluster identified by genome neighborhood

analysis is compared to sets of protein pairs from all possible subsets of the protein candidates. The

intersection between the sets of pairs is normalized by the larger of the number of pairs in the sets.

The possible subsets range in number from as few as three to the number of total candidate pro-

teins. The gene cluster score is:
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ZGC ¼
GC �GC

�

SD
;

where GC is the normalized intersection between the set of protein pairs in the gene cluster and the

set of protein pairs in the pathway model. GC
�

is the average and SD is the standard deviation of the

normalized intersection for all comparisons between the proteins associated with the gene cluster

and possible subsets of candidate proteins.

For the case in which the candidate set of enzymes is incomplete, a dummy enzyme that repre-

sents an unknown pathway enzyme was used (Figure 2—figure supplement 1D). For each of the

pathways, one enzyme was replaced with a dummy enzyme in the initial set of candidate enzymes.

For the serine biosynthesis case, the correct pathway with the dummy enzyme included was ranked

as the top-scoring model (Figure 2—figure supplement 1D). For the other test cases, the inclusion

of the dummy lowered the overall ranking of the correct pathway model, but the correct pathway

was still within the top-scoring models.

Experimental methods
Cloning, expression, and purification of HiUxuB, HiKdgK, and HiKdgA
The genes HiUxuB (Uniprot ID P44481), HiKdgK (Uniprot ID P44482), and HiKdgA (Uniprot ID

P44480) were amplified from H. influenzae strain Rd KW20 (ATCC 51907) genomic DNA. PCR was

performed using KOD Extreme DNA Polymerase (Novagen) according to the manufacturer’s guide-

lines. The conditions were: 2 min at 95˚C, followed by 40 cycles of 20 s at 95˚C, 20 s at 66˚C, and 20

s at 72˚C. Primers are listed in Supplementary file 7. The amplified fragments were cloned into the

N-terminal TEV cleavable 6x-Histag containing vector pNIC28-Bsa4 (pSGC-His), by ligation-indepen-

dent cloning (Aslanidis and de Jong, 1990; Savitsky et al., 2010).

The HiUxuB-pSGC-His, HiKdgK-pSGC-His, HiKdgA-pSGC-His vectors were transformed into BL21

(DE3) E. coli containing the pRIL plasmid (Stratagene) and used to inoculate a 20 mL 2 x YT culture

containing 25 mg/mL Kanamycin or 100 mg/mL Carbomycin and 34 mg/mL Chloramphenicol. The cul-

tures were grown overnight at 37˚C in a shaking incubator. The overnight culture was used to inocu-

late 2 L of PASM-5052 auto-induction media containing 150 mM 2–2-bipyridyl, 1 mM ZnCl2, and 1

mM MnCl2 (Studier, 2005) that was incubated at 37˚C in a LEX48 airlift fermenter for 4 hr and then

at 22˚C overnight. The culture was harvested and pelleted by centrifugation.

Cells were suspended in lysis buffer (20 mM HEPES, pH 7.5, 500 mM NaCl, 20 mM imidazole,

and 10% Glycerol) and lysed by sonication. The lysate was clarified by centrifugation at 35,000 x g

for 30 min, loaded onto a 5-mL Strep-Tactin column (IBA) on an AKTAxpress FPLC (GE Healthcare),

and washed with five column volumes of lysis buffer, and eluted in StrepB buffer (20 mM HEPES, pH

7.5, 500 mM NaCl, 20 mM Imidazole, 10% glycerol, and 2.5 mM desthiobiotin). The eluent was

loaded onto a 1-mL HisTrap FF column (GE Healthcare), washed with 10 column volumes of lysis

buffer, and eluted in buffer containing 20 mM HEPES pH 7.5, 500 mM NaCl, 500 mM Imidazole, and

10% glycerol. The purified sample was loaded onto a HiLoad S200 16/60 PR gel filtration column,

which was equilibrated with SECB buffer (20 mM HEPES, pH 7.5, 150 mM NaCl, 10% glycerol, and 5

mM DTT). Peak fractions were collected, protein was analyzed by SDS-PAGE, concentrated to 2.4 g/

L, 1.9 g/L, and 2.0 g/L, respectively, flash frozen in liquid nitrogen, and stored at �80˚C.

Cloning, expression, and purification of HiGulD and HiUxuA
The genes HiGulD (Uniprot ID Q57517) and HiUxuA (Uniprot ID P44488) were amplified from H.

influenzae strain Rd KW20 (ATCC 51907) genomic DNA. PCR was performed using KOD Extreme

DNA Polymerase (Novagen) according to the manufacturer’s guidelines. The conditions were: 2 min

at 95˚C, followed by 40 cycles of 20 s at 95˚C, 20 s at 66˚C, and 20 s at 72˚C. Primers are listed in

Supplementary file 7. The amplified fragment was cloned into the C-terminal TEV cleavable 10x-

Histag containing vector pNYCOMPS-LIC-TH10-ccdB (C-term) such that the tag is out of frame

(pNYCOMPSC-tagless), by ligation-independent cloning (Aslanidis and de Jong, 1990;

Savitsky et al., 2010).

The pNYCOMPSC-tagless HiGulD and HiUxuA constructs were transformed into E. coli BL21

(DE3) for expression. Both HiGulD and HiUxuA were purified from 1 L of culture using DEAE

Calhoun et al. eLife 2018;7:e31097. DOI: https://doi.org/10.7554/eLife.31097 18 of 27

Research article Biophysics and Structural Biology Computational and Systems Biology

https://doi.org/10.7554/eLife.31097


Sepharose, Q-Sepharose, and phenyl-Sepharose columns (all Amersham Biosciences) as previously

described (Wichelecki et al., 2014). Proteins were concentrated to 15 g/L and 6 g/L, respectively,

flash frozen in liquid nitrogen, and stored at �80˚C.

Preparation of 2-keto-3-deoxy-D-gluconate
2-Keto-3-deoxy-D-gluconate was synthesized via an enzymatic procedure. The reaction (1.5 mL) con-

tained 50 mM potassium HEPES, pH 7.9, 10 mM MgCl2, 100 mM D-mannonate, and 1 mM D-manno-

nate dehydratase (Uniprot ID B0T0B1). The reaction was left to proceed at 37˚C for 48 hr.

Afterward, the enzyme was removed by filtration using 30,000 NMWL ultrafiltration membranes

(Millipore). The identity of the product was verified via 1H-NMR.

Preparation of 2-keto-3-deoxy-D-gluconate-6-phosphate
2-Keto-3-deoxy-D-gluconate-6P was synthesized via an enzymatic procedure. The reaction (1.5 mL)

contained 100 mM potassium HEPES, pH 7.9, 10 mM MgCl2, 120 mM ATP, 100 mM D-mannonate,

1 mM D-mannonate dehydratase (Uniprot ID B0T0B1), and 1 mM 2-keto-3-deoxy-D-gluconate kinase

(Uniprot ID A4XF21). The reaction was left to proceed at 37˚C for 48 hr. Afterward, the enzyme was

removed by filtration using 10,000 NMWL ultrafiltration membranes (Millipore). The identity of the

product was verified via 1H-NMR.

Kinetic assays of L-gulonate catabolic pathway proteins
The kinetic assays were run in 200 mL aliquots at 37˚C and monitored using a continuous spectropho-

tometric assay. The identities of all products were verified via 1H-NMR.

Oxidation was quantitated by measuring the increase in absorbance at 340 nm (e = 6220 M�1

cm-1) of L-gulonate at carbon-5 by HiGulD (50 mM Tris, pH 9, 1.5 mM NAD+, and 200 nM HiGulD).

The substrate concentration was varied from 100 mM to 10 mM.

Oxidation was quantitated by measuring the increase in absorbance at 340 nm (e = 6220 M�1

cm-1) of D-mannonate at carbon-5 by HiUxuB (50 mM Tris, pH 9, 10 mM MgCl2, 1.5 mM NAD+, and

2 nM HiUxuB). The substrate concentration was varied from 50 mM to 5 mM.

Dehydration was quantitated by measuring the decrease in absorbance at 340 nm (e = 6220 M�1

cm-1) of D-mannonate by HiUxuA (50 mM potassium HEPES, pH 7.9, 10 mM MgCl2, 1.5 mM ATP,

1.5 mM PEP, 0.16 mM NADH, 9 units of pyruvate kinase, 9 units of lactate dehydrogenase, 18 units

of 2-keto-3-deoxy-D-gluconate kinase, and 200 nM HiUxuA). The substrate concentration was varied

from 100 mM to 30 mM.

Phosphorylation was quantitated by measuring the decrease in absorbance at 340 nm (e = 6220

M�1 cm-1) of 2-keto-3-deoxy-D-gluconate by HiKdgK in a coupled assay with lactate dehydrogenase

(50 mM potassium HEPES, pH 7.9, 10 mM MgCl2, 1.5 mM ATP, 1.5 mM PEP, 0.16 mM NADH, 9

units of pyruvate kinase, 9 units of lactate dehydrogenase, and 200 nM HiKdgK). The substrate con-

centration was varied from 100 mM to 5 mM.

Cleavage was quantitated by measuring the decrease in absorbance at 340 nm (e = 6220 M�1

cm-1) of 2-keto-3-deoxy-D-gluconate-6P by HiKdgA in a coupled assay with lactate dehydrogenase

(50 mM potassium HEPES, pH 7.9, 10 mM MgCl2, 1.5 mM PEP, 0.16 mM NADH, 9 units of lactate

dehydrogenase, and 200 nM HiKdgA). The substrate concentration was varied from 100 mM to 5

mM.

Bacterial strains and growth conditions
H. influenzae Rd KW20 (ATCC 51907) was grown aerobically at 37˚C with shaking at 225 rpm, and

was routinely cultured in Brain Heart Infusion (BHI, Difco) broth or on BHI solid medium, supple-

mented with nicotinamide adenine dinucleotide (NAD) and hemin at 10 mg mL�1 (sBHI). For gene

expression analyses and carbon utilization studies, the defined medium of Coleman et al. (2003) was

used. Glucose-free RPMI-1640 (Sigma R1383) was supplemented with the following additives:

HEPES, 6 mg mL�1; NaHCO3, 2 mg mL�1; inosine, 1.75 mg mL�1; uracil, 87 mg mL�1; NAD, 10 mg

mL�1; hemin, 10 mg mL�1. D-glucose, L-gulonate, or D-mannonate (10 mM) served as the source of

carbon. Kanamycin was added at 10 mg mL�1 when appropriate.
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Growth curves
Growth curves were recorded using the Bioscreen C instrument (Growth Curves, USA) and 100-well

plates. Starter cultures of H. influenzae Rd KW20 were grown overnight in sBHI, washed in minimal

medium lacking carbon source, and re-suspended in an equivalent volume of minimal medium lack-

ing carbon source. Each well contained 300 mL minimal medium with D-glucose, L-gulonate, or

D-mannonate (10 mM), and was inoculated to 1% with washed starter culture. Plates were incubated

at 37˚C with continuous shaking at medium amplitude and the optical density at 600 nanometers

(OD600) was recorded every 30 min for 48 hr.

Transcriptional analysis
Starter cultures of H. influenzae Rd KW20 were grown overnight in sBHI, washed in minimal medium

lacking carbon source, and re-suspended in an equivalent volume of minimal medium lacking carbon

source. This culture was used to inoculate 5 mL minimal medium (1% inoculum) with 10 mM glucose,

and cultures were grown until OD6000.3–0.5. Cells were washed and re-suspended in 4 mL minimal

medium lacking carbon source. Cultures were divided into two equal 2 mL volumes, 10 mM glucose

was added to one volume and 10 mM L-gulonate or D-mannonate was added to the other, and the

cultures were grown until OD6000.8–1.0. At the time of cell harvest, one volume of RNAprotect Bac-

teria Reagent (Qiagen) was immediately added to two volumes of each actively growing culture.

Samples were mixed by vortexing for 10 s and incubated for 5 min at room temperature. Cells were

pelleted, flash frozen in liquid nitrogen, and stored at �80˚C.
RNA isolation was performed in an RNAse-free environment at room temperature using the

RNeasy Mini Kit (Qiagen) according to the manufacturer’s instructions. Cells were disrupted accord-

ing to the ‘Enzymatic Lysis Protocol’ in the RNAprotect Bacteria Reagent Handbook (Qiagen); lyso-

zyme (Thermo-Pierce) was used at 15 mg/mL. RNA concentrations were determined by absorption

at 260 nanometers (A260) using the Nanodrop 2000 (Thermo) and absorption ratios A260/A280 and

A260/A230 were used to assess sample integrity and purity. Isolated RNA was stored at �80˚C until

further use.

cDNA synthesis was performed using 300 ng of total isolated RNA with the ProtoScript First

Strand cDNA Synthesis Kit (NEB), according to the manufacturer’s instructions. Primers for quantita-

tive real-time (qRT) PCR were designed using the Primer3 primer tool; amplicons were 150–200 bps

in length. Primers were 18 to 24 nucleotides in length and had a theoretical Tm of 55–60˚C. Primer

efficiency was determined to be at least 90% for each primer pair. Primer sequences are provided in

Supplementary file 8. qRT-PCRs were carried out in 96-well plates using the LightCycler 480 II

instrument (Roche) with the LightCycler 480 SYBR Green I Master Mix (Roche), according to the

manufacturer’s instructions. Minus-RT controls were performed to verify the absence of genomic

DNA in each RNA sample, for each gene target analyzed. Relative changes in gene expression were

analyzed by the 2-DDCT method (Livak and Schmittgen, 2001), using the 16S rRNA gene as a refer-

ence. Each qRT-PCR was performed in triplicate, and fold-changes are the averages of at least three

biological replicates.

Gene disruption
To create a genetic deletion of the putative L-gulonate SBP (HI0052), triple overlap extension PCR

was used. Briefly, using Pfu Ultra High-Fidelity DNA polymerase (Agilent), three PCR fragments were

generated: (a) a fragment corresponding to the genomic region ~1000 bps upstream of HI0052 was

amplified from H. influenzae Rd KW20 genomic DNA with primers Del_HI0052_arm1fwd and Del_-

HI0052_arm1rev, (b) the kanamycin resistance cassette from p34s-Km (Dennis and Zylstra, 1998)

was amplified with primers Kan_OL_delHI0052_fwd and Kan_OL_delHI0052_rev, and (c) a fragment

corresponding to the genomic region ~1000 bps downstream of HI0052 was amplified from H. influ-

enzae Rd KW20 genomic DNA with primers Del_HI0052_arm2fwd and Del_HI0052_arm2rev. The 3’

end of fragment ‘a’ and the 5’ end of the kanamycin resistance cassette (fragment ‘b’) were engi-

neered with 50 bps of identical overlapping sequence, as were the 3’ of the kanamycin resistance

cassette and the 5’ end of fragment ‘c’. One hundred ng of each of these PCR fragments were com-

bined in a triple overlap extension PCR with primers Del_HI0052_arm1fwd and Del_HI0052_arm2rev

to generate a ~3 kb fragment with arms homologous to the genomic regions flanking HI0052, with

an intervening kanamycin resistance cassette.
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The same approach was used to create a genetic deletion of the putative L-gulonate dehydroge-

nase (HI0053). To generate the triple overlap extension product for deletion of HI0053, primers

Del_HI0053_arm1fwd and Del_HI0053_arm1rev and primers Del_HI0053_arm2fwd and Del_-

HI0053_arm2rev were used to amplify the regions ~1000 bps upstream and downstream of HI0053,

respectively, from H. influenzae Rd KW20 genomic DNA. The kanamycin resistance cassette from

p34s-Km was amplified with primers Kan_OL_delHI0053_fwd and Kan_OL_delHI0053_rev. One hun-

dred ng of each of these PCR fragments were combined in a triple overlap extension PCR with pri-

mers Del_HI0053_arm1fwd and Del_HI0053_arm2rev to generate a ~3 kb fragment with arms

homologous to the genomic regions flanking HI0053, with an intervening kanamycin resistance cas-

sette. Primer sequences are provided in Supplementary file 9.

Each of the triple overlap PCR products was gel-purified and 100 ng was transformed into 1 mL

of H. influenzae Rd KW20 cells made competent by the M-IV method (Poje and Redfield, 2003).

Double crossover recombinants were selected by resistance to kanamycin and confirmed by geno-

mic PCRs.

Cell preparation and metabolite extraction
GC-MS-based metabolic analysis of whole cell extracts was carried out with samples of H. influenzae

Rd KW20 grown with 13C labeled L-gulonate or D-glucose, following the procedure of Zhao et al.

(2013). Cells grown in rich medium were diluted 1:100 into defined medium with 10 mM unlabeled

L-gulonate or D-glucose as added carbon source and grown to an OD600 of 0.6 (approximately 18

hr). Cells were harvested by centrifugation (4000 � g, 10 min, 4˚C), washed twice in defined medium

without added carbon source, and re-suspended in this medium. Cell density was adjusted to

OD600 = 6.0, and the cell suspension was then depleted of catabolic metabolites by incubation at

37˚C for 30 min before transferring to ice. A mixture of 5 mM 13C labeled L-gulonate plus 5 mM

unlabeled L-gulonate, or a mixture of 5 mM 13C labeled D-glucose plus 5 mM unlabeled D-glucose,

was added to the samples followed by incubation at 37˚C. At time points of 1, 2, 10, and 60 min,

samples were pelleted by centrifugation (16,000 � g for 1 min), supernatants were removed, and

cell pellets were flash frozen in liquid nitrogen. Samples were stored at �80˚C prior to extraction.

Metabolites were extracted directly from cell pellets by re-suspension in 0.5 mL extraction buffer

(40:40:20 mixture of methanol:acetonitrile:water spiked with 1 mM L-norvaline for an internal stan-

dard) followed by 10 min of vortexing at room temperature. Cell extracts were cleared of debris via

two rounds of centrifugation at 16,000 � g for 1 min, split into two equal portions, dried, and stored

at �80˚C prior to analysis.

Cell extracts were derivatized by one of two methods. To determine labeling of small metabolites

of central carbon metabolism (glycolysis, TCA cycle and amino acids), extracts were derivatized with

isobutylhydroxylamine and N-tert-butyldimethylsilyl-N-methyltrifluoroacetamide (TBDMS), and ana-

lyzed by GC-MS as described before (Ratnikov et al., 2015). Data were calculated in terms of frac-

tional 13C labeling (the average 13C labeling across all metabolite carbons). Alternatively, to

determine the labeling of gulonate and other 6-carbon molecules in the proposed pathway for L-gul-

onate metabolism, extracts were derivatized with 30 mL methoxyamine hydrochloride (Sigma, 20

mg/ml in pyridine) for 20 min at 80˚C, followed by 30 mL BSTFA (trimethylsilylating reagent, Thermo)

for 60 min at 80˚C. Derivatized metabolites were analyzed by GC-MS as described before

(Scott et al., 2011), using a modified temperature gradient: initial temperature was 60˚C, held for 4

min, rising at 20 ˚C/min to 280˚C, held for 4 min. Metabolites were identified by matching elution

times and mass fragment patterns to standards. Labeling data for D-fructuronate were calculated as

the ratio of mass 268: mass 264. Mass 264 corresponds to the fragment of D-fructuronate containing

the four carbon atoms C3-C6 of the carbon backbone plus the complete derivatized side-chains

(methoxaminated keto group and three trimethylsilylated hydroxyl groups) of this C3-C6 fragment,

formula C14H34NO4Si3. Mass 268 corresponds to the same fragment with the backbone carbons
13C-labeled.

Code availability
The source code for the IMP program, benchmark, input scripts files, and output files for the bench-

mark and the gulonate pathway calculations are available at http://integrativemodeling.org and

https://github.com/salilab/pathway_mapping (Calhoun, 2017; copy available at https://github.com/
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elifesciences-publications/pathway_mapping). Open access metabolite docking and libraries at

http://metabolite.docking.org/ and at http://blaster.docking.org/. NetIMP is available in the Cyto-

scape app store.
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