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ABSTRACT: To assess the mutational robustness of nucleic acids, many genome- and
protein-level studies have been performed, where nucleic acids are treated as genetic
information carriers and transferrers. However, the molecular mechanisms through which
mutations alter the structural, dynamic, and functional properties of nucleic acids are
poorly understood. Here we performed a SELEX in silico study to investigate the fitness
distribution of the L-Arm-binding aptamer genotype neighborhoods. Two novel functional
genotype neighborhoods were isolated and experimentally verified to have comparable
fitness as the wild-type. The experimental aptamer fitness landscape suggests the
mutational robustness is strongly influenced by the local base environment and ligand-
binding mode, whereas bases distant from the binding pocket provide potential
evolutionary pathways to approach the global fitness maximum. Our work provides an
example of successful application of SELEX in silico to optimize an aptamer and
demonstrates the strong sensitivity of mutational robustness to the site of genetic variation.

As one of the most important biological macromolecules,
nucleic acids have diverse functions in encoding, trans-

mission, and expression of genetic information. This diversity is
due to the vast sequence space of nucleic acids. High
dimensionality of sequence space provides multiple evolu-
tionary pathways to evolve specific phenotypes under selection
pressure. However, such pathways might pass through local
fitness minima (valleys on fitness landscape) due to detrimental
effects of mutation in immediate vicinity of evolved genotypes.
To address the fitness effect of mutations, extensive studies
have focused on understanding mutational robustness at the
genome and protein levels. Previous analyses of DNA
sequencing data and mutation accumulation and mutagenesis
experiments have revealed that >90% of gene knockouts in
Escherichia coli are nonlethal,1 whereas in humans, most amino
acid substitutions2 have fitness effects, amounting to selection
coefficients, in the range of 10−3 to 10−1, and relatively few

substitutions have effects greater than 0.1. The significant
mutational robustness of cellular organisms could be explained
by buffering mechanisms, including alternative metabolic
pathways, genetic redundancy, and modularity. In a biological
system without a buffering mechanism, such as some RNA
viruses,3,4 random nucleotide mutations can reduce fitness by
an average of nearly 50%, with up to 40% mutations being
lethal. These numbers are similar to those found for DNA
viruses,5 and both of these viruses exhibit greater mutational
sensitivity than cellular organisms. The roles of nucleic acids are
genetic information carriers and transferrers, but the in-depth
mutational robustness of nucleic acids themselves, that is, how
mutations alter the structural, dynamic, and functional
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properties of nucleic acids, remains poorly understood. The
exploration of nucleic acid sequence space is largely limited by
the available experimental technologies. However, their reach is
not sufficient to cover the vast sequence space, limiting the
extent to which the mutational robustness of functional nucleic
acids can be explored. Therefore, a comprehensive molecular-
level analysis of the mutational effects on the structural,
dynamic, and functional properties of nucleic acids will provide
a solid basis for the understanding of molecular evolution of
nucleic acids.
A nucleic acid can adopt distinct secondary or folded tertiary

structures that bind targets potently and selectively. These
structures, which are denoted aptamers, are generally identified
from a random sequence library using Systematic Evolution of
Ligands by Exponential Enrichment (SELEX).6−8 Through the
efforts of many researchers, SELEX technology has evolved
rapidly, and the current technology enables the identification of
a wide range of aptamer targets, ranging from small molecules
and metal ions to proteins, biological cells, and tissues. One
variant of SELEX is genomic SELEX,9 which aims to identify
genome-encoded nucleic acids with defined properties from a
library consisting of short fragments from the human genome
rather than random sequences. Through genomic SELEX, both
ATP-binding aptamers and GTP-binding motifs were found to
be encoded in genomic sequences,10,11 which provides an
interesting perspective on gene regulation. Taking the target-
binding affinity as the fitness indicator, aptamers are fitness
peaks in a sequence space and are surrounded by many
genotypes, some of which have the ability to bind targets.12,13 A
40-mer aptamer has 120 single mutant, 7020 double mutant,
and 266 760 triple mutant genotype neighborhoods in the
sequence space (consisting of 440 ≈ 1024 sequences). Although
the initial SELEX library comprises up to 1018 sequences, it
remains very difficult for SELEX to effectively identify
functional sequences from an aptamer genotype neighborhood
(Supporting Figure S1). Limited by a lack of high-throughput
and parallel experimental technologies,14−18 an exhaustive
search is extremely difficult. Thus although the problem of
finding a functional aptamer in a sequence space has been
successfully addressed by SELEX, the greater challenge is to
optimize the found aptamers toward better ligand-binding
affinity or selectivity; that is, the inference of local fitness
maximum to global fitness maximum in a sequence space,
seems unsolvable. Consequently, the mutational robustness of
nucleic acids is not fully understood.
Computational approaches are rapid, efficient, and paralleliz-

able and have thus become important tools in nucleic acid
research.21−28 In our previous work,29 we proposed a
computational approach involving the application of SELEX
in silico for aptamer selection and successfully identified six
novel theophylline-binding RNA aptamers from 413 sequences.
In the present study, we selected the L-argininamide (L-Arm)-
binding aptamer (the first solved 3D structure of a DNA
aptamer30) as our research system and used SELEX in silico to
predict the fitness (defined as the ligand-binding affinity Kd) of
each aptamer genotype neighborhood in the sequence space.
SELEX in silico is a two-step approach (Figure S2). The first
step is secondary structure-based sequence screening, which
aims to collect the sequences that can form the L-Arm-binding
motif (Figure 1B) as an enhanced initial library. Then,
molecular dynamics (MD) simulation based virtual screening
is performed to enrich aptamer-like sequences from the
enhanced initial library. All mutants that formed more than

five hydrogen bonds with L-Arm, or showed high stability of the
binding complex (RMSD < 3 Å), or had comparable predicted
binding free energies as the wildtype (WT) aptamer were
retained for next round screening (Figure S4 and Table S1).
The MD simulation of the WT aptamer was selected as
reference during sequence selection of SELEX in silico,
accompanied by the consideration of available computational
resource and efficiency. The L-Arm-binding aptamer consists of
a stem region (bases 1−7 and 18−24) and a noncanonical
region (bases 8−17), which form the binding pocket19,30−32

(Figure 1B). Base C9, which is stacked by a reversed
Hoogsteen mismatch pair (A8−C17) and a Watson−Crick
pair (G10•C16), forms two hydrogen bonds with L-Arm on its
Watson−Crick edge. In the current study, we focused on the
mutations in the binding pocket with the exception of C9, that
is, on the mutations in bases 8 and 10−17. All of the mutants
(49 = 262 144) were analyzed in the stage of secondary
structure analysis, whereas in the MD-based virtual screening
stage, the mutants with Hamming distances ranging from 1 to 3
to the WT aptamer (2619 mutants in total) were selected for
in-depth analysis. Two novel functional genotype neighbor-
hoods of L-Arm-binding aptamers were identified through
SELEX in silico to exhibit comparable fitness (experimental Kd
= 69.3 and 110.7 μM) to the WT aptamer (experimental Kd =
114.4 μM).Combined with previously reported data,19 the
constructed fitness landscape suggests that the mutational
robustness of nucleic acids is generally low but infrequently
high in certain evolutionary direction. The target-binding ability
of nucleic acids is extremely sensitive to the sequence variation
in or near the binding pocket, as expected, whereas bases
distant from the binding pocket exhibit considerable tolerance
to substitutions and represent a potential evolutionary pathway
for approaching the global fitness maximum.
The minimum free energy (MFE) secondary structures of

the 262 144 mutants can be grouped into 57 unique structural
motifs, among which the L-Arm-binding motif (the target motif
identified by SELEX in silico, Figure 1B) is the most populated
(118,127 sequences). All of the mutants can fold into the target
motif with varying energy penalties (Figure S3), and an average

Figure 1. (A) Distribution of the free-energy gaps on target-motif
formation in sequence space. The center of the polar plot is the WT L-
Arm-binding DNA aptamer, the distance from the center indicates the
corresponding Hamming distance of the mutants, the angle indicates
the proportion of target motif foldable sequences in each sequence
subspace, and the color represents the corresponding free-energy gap
(ΔΔGgap). (B) Secondary structure of the WT aptamer. The base
preferences at each position in the noncanonical region were
calculated for the screened best 100 sequences, which were selected
by SELEX in silico from the 2619 closest neighbors (whose Hamming
distance to the WT aptamer is no greater than three).
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free-energy gap ΔΔGgap (the difference between the lowest
secondary structure energy state ΔGMFE and the target
secondary structure state ΔGtarget, defined as ΔGMFE − ΔGtarget)
of 0.78 kcal/mol was obtained. Surprisingly, 84% of the
mutants (220 721 sequences) have a lower ΔΔGgap than that of
the WT aptamer (1.44 kcal/mol). As observed in Figure 1A,
the distribution of the ΔΔGgap in the sequence subspace (each
sequence subspace was composed of mutated sequences with
the same Hamming distance to the WT aptamer and thus
contained 3nC9

n sequences, where n is the Hamming distance)
was found to be consistent, regardless of the value of n,
indicating that the secondary structure of the DNA aptamer
exhibits remarkable tolerance to base substitutions. This finding
is different from that for the theophylline-binding RNA
aptamer,29 which has a complex secondary structure and is
very sensitive to base substitutions, presented as a sharp peak
on a rugged landscape. Similar to SELEX,29 MD-based virtual
screening approaches bias the initial library toward ligand
binding by predicting the ligand-binding free energy. Figure S4
shows the distribution and cumulative count of the calculated
binding free energy ΔGMM/PBSA (black points) and ΔGtheor−PB
(defined as ΔGMM/PBSA − TΔSNMA) (red points), which was
analyzed to explore the sequence enrichment of SELEX in silico
(Table S1). After four rounds of MD-based virtual screening,
the selected sequences were predicted to have noticeably lower
ligand-binding free energy than random mutants. After two
rounds of MD-based virtual screening, 100 of the 2370
sequences remained due to their high stability or low binding
free energy, and the base preferences at each position were then
calculated (Figure 1B). The percentage of the most populated
bases ranged from the highest peak at the 13th base (cytosine,
80%) to the lowest peak at the 16th base (cytosine, 59%),
whereas the reference values for the original and substituted
bases among the 2619 mutants were approximately 68.3 and
10.6%, respectively. Although only the closest genotype
neighborhoods in the sequence space (single, double, and
triple mutants) were searched in the current study, the
mutational effect appears highly position-dependent. At
positions 10, 13, and 17, the original base is more dominant,
whereas multiple mutations of the 14th or 16th base are
allowable.
Ensembles of 20 simulations (Table 1 and Figure 2) were

run to obtain sufficient sampling of the conformational space,33

and the collected L-Arm-DNA complex snapshots were then
subjected to MM/PB(GB)SA calculations and normal-mode
analysis (NMA) to estimate the enthalpic and entropic
contributions to the binding free energy, respectively. The
snapshot-based normalized frequency distributions of
ΔGMM/PBSA, ΔGMM/GBSA, and −TΔSNM presented well-defined
Gaussian distributions (Figure S5−S7). The calculated binding
free energies of the WT aptamer genotype neighbors agreed
with experimental mutational effects reported in previous
research.19 Compared with the WT aptamer, most mutants
have significantly higher calculated binding free energy, which
are correctly predicted to bind the ligand with lower binding
affinity, as found by experiment.19 Interestingly, two mutants,
Mutant-6 (A12G&G13T) and Mutant-7 (G13T), whose
normalized frequency distribution ΔGMM/PBSA is slightly shifted
toward lower binding free energy relative to the WT (Figure
2A), bind the ligand more tightly than the WT aptamer.
Surprisingly, in silico selected genotype neighborhood aptamer
QT-1, the best one predicted by SELEX in silico, has lower
predicted binding free energy (the mean ΔGMM/PBSA was

−56.15 kcal/mol) than the WT aptamer (−45.59 kcal/mol),
while that of aptamer QT-2 was −47.52 kcal/mol. Similar
effects were observed for ΔGMM/GBSA: Aptamer QT-1 was the
strongest, followed by aptamer QT-2 and the WT aptamer. The
calculated entropies, −TΔSNM, of these three aptamers have
coinciding mean (∼21.6 kcal/mol) and standard deviation
values. Thus two novel sequences (QT-1 and QT-2), which
were identified through SELEX in silico from the aptamer
closest neighborhood, were predicted to bind L-Arm as potently
as the WT aptamer, and this finding was further experimentally
verified (Supporting Text S2).
Circular dichroism (CD) has been extensively used in

research on nucleic acids because of its sensitivity to the
conformation of anisotropic molecules.19,34−36 CD spectra were
recorded by titrating the DNA aptamer at various concen-
trations of L-Arm (Figure 3). The WT aptamer displayed a
positive peak at 280 nm in the CD spectra, whereas increasing
concentrations of L-Arm decreased the molar ellipticity in this
region (270−290 nm). This intensity change could indicate
that the aptamer has changed its conformation to bind to the
ligand, known as the induced-fit binding mechanism.31,37 The
sequences QT-1 and QT-2 exhibit similar changes in the CD

Figure 2. (A) Normalized frequency distribution for ΔGMM/PBSA is
shown in per snapshot for the WT aptamer and its genotype
neighborhoods. The expected normal distribution given the same
mean and standard deviation for each data set is shown by the lines.
(B) Comparison between the experimental ΔGexp (kcal/mol) and the
theoretical predictions using MM/PBSA and normal-mode analysis
(ΔGtheor−PB, left) and MM/GBSA and normal-mode analysis
(ΔGtheor−GB, right). Error bars show the standard errors. The line
represents a linear regression performed on each data set. See
Supporting Text S1 for more computational details.
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spectra, which demonstrates that these sequences may bind L-
Arm in a manner similar to that found for the WT aptamer.
Conversely, for many randomly selected genotype neighbor-
hoods and previously reported clone 12−28 mutants,19 no
changes in the CD signal were found in the presence of L-Arm,
which is consistent with their extremely low ligand-binding
affinity. To calculate the dissociation constant of the binding
(Kd), we analyzed the CD spectra using the optical curve direct
fitting method (Figure S8).19,34,35 For the WT aptamer, the
value of Kd was 114.4 ± 9.2 μM, which is similar to the
previously reported value (∼10019 and 134.6 μM34for the
longer 28-mer aptamer, 165.7 μM35for 24-mer 1OLD
aptamer). The Kd of the aptamer QT-2 is similar to that of
the WT aptamer (110.7 ± 12.6 μM), whereas the aptamer QT-
1 exhibited strongest binding affinity with L-Arm (69.3 ± 6.1
μM), which is generally consistent with our computational
prediction. To obtain the enthalpic contribution to the ligand-
binding process, we performed “model-free” isothermal
titration calorimetry (ITC) studies35,38 to avoid any possible
fitting bias (Figure S9). By integrating the corrected area under
the peaks, the overall enthalpy of binding for the WT enthalpy
was found to equal −32.30 ± 1.2 kcal/mol. In contrast, the
aptamer QT-1 has a lower ΔH (−33.79 ± 1.23 kcal/mol) than
that of QT-2 (−32.11 ± 1.7 kcal/mol). Comparing the
experimental data and our prediction (Figure 2B), the
coefficients of determination r2 (0.76 for ΔGtheor−PB and 0.77
for ΔGtheor−GB) were obtained, suggesting that MM/PB(GB)SA
and NMA methods can accurately rank the ordering of ligand
binding affinity of the mutants around the WT aptamer. As
noted, the overall entropy change in a binding system34,39−41 is
a combination of the aptamer conformational changes,
reorganization of the solvent environment, changes in the
translational and conformational freedom of the ligand, and the
release of counterion molecules. The development of binding
free-energy calculation approaches, especially entropy estima-
tion methods, will greatly facilitate the fast and accurate
selection of functional nucleic acid sequences from the vast
sequence space.
The aptamer QT-1 is a triple mutant (T11C&A12G&C14T)

of the WT aptamer, whereas QT-2 is a double mutant
(C14A&G15T). As observed from the binding conformations,

the overall structure of the aptamer binding pockets has been
retained in aptamers QT-1 and QT-2. As shown in Figure 4,

the guanidinium end of L-Arm was directed toward C16−C17
and forms two hydrogen bonds with the Watson−Crick edge of
C9 of both the WT aptamer and its genotype neighborhood
QT-1. The guanidinium-C9 pair was further stacked by a
Watson−Crick pair G10•C16 and a reversed Hoogsteen
mismatch pair (A8−C17). For the WT aptamer, the peptide
linkage of L-Arm was directed toward A12 and forms a
hydrogen bond with the sugar phosphate backbone of G10 and
G13. However, the T11C mutation in the aptamer QT-1
weakens the occasional contact within T11-G15 and facilitates
the folding of the T11-G15 loop segment toward L-Arm. The
A12G mutation in particular successfully introduces an
additional interaction between L-Arm and the carbonyl at C6
of guanine G12. These favorable interactions induced by
mutations are conducive to the binding of L-Arm with the
aptamer QT-1. Compared with aptamer QT-1, only one
intermediate with lower ligand-binding affinity (G15A, KA =
1689 M−1) was found between the WT aptamer (KA = 8000
M−1) and aptamer QT-2 (C14A&G15T, KA = 9033 M−1) in
our experimental fitness network (Figure S10). In the present
study, we were able to screen only a small fraction of the full
sequence space and likely have missed possible strong binders.
In addition, some sequences that were discarded in the process
of SELEX in silico might undergo significant conformational
changes and bind the ligand with a novel binding mode not
considered here (false-negatives).
On the basis of previous data19 and the current study (Table

S2), the fitness landscape was constructed to reflect how
mutations alter the nucleic acid ligand-recognition ability.42,43

As shown in Figure 5 and Figure S10, the WT aptamer is
located at the origin of the x−y plane, whereas the mutations
that occurred in the noncanonical region were represented at
different coordinate azimuths to the positions of the mutated
bases. The height of each mutant was represented by its ligand
binding constant KA with a corresponding color. Surrounding
the WT aptamer, there is one single mutant G13T, two double
mutants (A12G&G13T and C14A&G15T), and a triple mutant
(T11C&A12G&C14T) with equivalent fitness. Unsurprisingly,
almost all of the mutations around the binding pocket (A8T,
A8G, C9T, G10A, C16T, C17A, A7T&T18A, and
A7G&T18C) abolished the ligand-binding, which suggested

Figure 3. Circular dichroism (CD) spectra of the 4.5 μM L-Arm-
binding DNA aptamers titrated with various concentrations of L-Arm
in 10 mM sodium phosphate, 25 mM NaCl, pH 6.5. (Left) the WT
aptamer; (Right) in silico screened aptamer QT-1.

Figure 4. Comparison of the binding modes of L-Arm with the WT
aptamer (Left) and in silico screened aptamer QT-1 (Right). The
color of carbon in the aptamer was set to yellow, while for L-Arm it was
blue. The red dashed lines indicate hydrogen-bonding interactions.
Different from the WT aptamer by only three bases, the in silico
screened aptamer QT-1 stabilizes L-Arm by constructing a closer
binding pocket and forming extra hydrogen bonds between the base
edges of G12 and L-Arm.
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that these bases were conserved for L-Arm binding and display
significant low mutational tolerance. This conclusion is
reasonable because each base surrounding the pocket plays
an indispensable role in maintaining the particular ligand
binding mode as follows: C9 is the partner of the hydrogens
bonds for the ligand, the Watson−Crick pair G10•C16 and
reversed Hoogsteen mismatch pair A8−C17 can stack, and the
Watson−Crick pair A7•T18 is the connector of the stem
region and the noncanonical region of the aptamer. However,
the bases located far from the binding pocket (T11, A12, G13,
C14, and G15) show remarkable tolerance to mutations. The
stepwise mutations G13T, A12G, and T11C&T13G&C14T
can successfully evolve the WT aptamer to QT-1 without any
fitness loss, which establishes an evolutionary beneficial
pathway from one fitness peak to another higher fitness peak
through local exploration. Thus from a macroscopic perspective
functional nucleic acid aptamers are rare and evolutionarily
isolated from one another in the sequence space, and the fitness
landscape is a rugged “Badlands” landscape with multiple
peaks.12,13,19,29 Benefiting from the huge screened nucleic acid
sequence library (up to 1018 sequences) and enrichment of
ligand-binding nucleic acid, SELEX technology has greatly
increased the probabilities of observing fitness peaks in
sequence space. From a microscopic point of view, the majority
of the mutants will lose their fitness, whereas only a few
genotype neighborhoods in certain regions could be functional.
The resulting fitness landscape is Fujiyama-like, while
experimental parallel characterization approaches like micro-
arrays13−15 and computational approaches including SELEX in
silico29 could be adopted for its detailed exploration. The
ligand-binding function of the nucleic acid is the central
property determining the aptamer fitness in this study. More
generally, other biological selective pressures could greatly
affect the fitness landscape of a nucleic acid and its evolutionary
dynamics. High-throughput screening in search for riboswitches
with specific properties such as specific ligand-induced RBS

(ribosome binding site) and dynamics in paired and unpaired
dynamic states (ligand-free relatively slow translation and
ligand-bound relatively fast translation)44,45 identified synthetic
riboswitches that show significant gene expression level change
with/without the presence of the desired ligand. In principle, by
building a suitable physical model and selecting appropriate
physical chemistry parameters, computational approach46,47

including SELEX in silico can further reveal the fitness
landscapes of riboswitches and highlight their possible
evolutionary dynamics.
In summary, we applied SELEX in silico to investigate the

fitness distribution of nucleic acid genotype neighborhoods in a
sequence space. Most mutants fail to bind the ligand with
sufficient affinity, which is consistent with previous research for
L-Arm-binding DNA aptamer19 and other aptamers,12,14,22,29

and this indicates that the aptamer is resistant to base
substitutions and relies on the local sequence environment
for target binding. Two novel aptamers were experimentally
verified to exhibit comparable fitness to the WT aptamer. The
experimental nucleic acid fitness landscape constructed based
on the current work and previous research19 suggests that the
mutational robustness of nucleic acids is generally low but
infrequently high in certain evolutionary direction. Our work
provides an example of successful application of SELEX in silico
for aptamer optimization and demonstrates the complexity of
the mutational robustness of nucleic acids from a novel
perspective.
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