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Review
Glossary

Homology modeling: a computational technique that builds an atomic model

of a target protein using its sequence and an experimental 3D structure of a

homologous protein (called the ‘template’). The quality of a homology

model depends on the accuracy of the sequence alignment between target

and template, which varies (loosely) with the sequence identity (roughly

speaking, pairwise identity higher than 40% is ideal, and lower than 25% is

poor).

Ligand docking: a computational technique that predicts and ranks the binding

poses of small molecule ligands to receptors (e.g., proteins). Docking usually

comprises a sampling method that generates possible binding poses of a

ligand in a binding site, and a scoring function that ranks these poses. Most

scoring functions are empirical, and give only a crude estimate of the binding

free energy of a ligand.

Secondary metabolism: biochemical pathways to produce organic molecules

(i.e., secondary metabolites) that are not absolutely required for the survival of

the organism. There are five particularly prevalent classes of secondary

metabolite: isoprenoids, alkaloids, polyketides, nonribosomal peptides, and

ribosomally synthesized and post-translationally modified peptides. Second-

ary metabolites are often restricted to a narrow set of species and have

important ecological roles for the organisms that produce them. Many

secondary metabolites are bioactive (antibacterial, anticancer, antifungal,
The rapid growth of the number of protein sequences
that can be inferred from sequenced genomes presents
challenges for function assignment, because only a
small fraction (currently <1%) has been experimentally
characterized. Bioinformatics tools are commonly used
to predict functions of uncharacterized proteins. Recent-
ly, there has been significant progress in using protein
structures as an additional source of information to infer
aspects of enzyme function, which is the focus of this
review. Successful application of these approaches has
led to the identification of novel metabolites, enzyme
activities, and biochemical pathways. We discuss oppor-
tunities to elucidate systematically protein domains of
unknown function, orphan enzyme activities, dead-end
metabolites, and pathways in secondary metabolism.

The challenge of protein function assignment
The rapid advances in genome-sequencing technology have
created enormous opportunities and challenges for defin-
ing the functional significance of encoded proteins. Al-
though the number of genome sequences continues to
grow rapidly, experimentally verified functional annota-
tions lag well behind and are growing at a slower pace. As
of May 2014, the UniProtKB (TrEMBL and Swiss-Prot)
database contained 56 010 222 sequences, but only
545 388 sequences (�1%) are listed in Swiss-Prot, the
manually annotated and reviewed portion of UniProtKB
[1,2], where experimental information about function is
reported. High-throughput bioinformatics methods are
clearly needed to bridge this gap, but many significant
challenges remain for reliably predicting the functions of
proteins using the most common approaches, which are
based primarily on transferring the relatively small num-
ber of experimentally determined functions to large collec-
tions of proteins based on sequence similarity. The rates of
misannotation in the major repositories of protein se-
quence information, such as GenBank and TrEMBL, are
unknown but estimated to be large [3,4].
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One fundamental challenge is that there is no univer-
sal criterion sufficient to determine when a pair of pro-
teins are likely to have the same or different functions;
even if two proteins are highly homologous to one another
and have similar structures, a change of only a few
residues in the active site can change the functional
specificity [5]. A second fundamental challenge is that
annotation transfer, by definition, cannot identify new,
uncharacterized protein functions. These challenges
have motivated the development of diverse approaches
to protein functional characterization and prediction.
Such approaches use additional types of information
beyond protein sequence, such as high-throughput meta-
bolomics [6], RNA profiling [7–9], proteomics [10,11], and
phenotyping experiments [12], and orthogonal types of
bioinformatics information, such as genome organization
(operons and gene clusters; domain fusions) and meta-
bolic systems analysis [13].
antiviral, antioxidant, anti-inflammatory, antiparasitic, antimalaria, cytotoxic,

etc.) and have been used as drugs and drug leads.

Structural genomics: an effort to determine the 3D, atomic-level structure of

every protein encoded by a genome through a combination of high-throughput

experimental and modeling approaches. The determination of a protein structure

though a structural genomics effort often precedes knowledge of its function,

motivating the development of methods to infer function from structure.
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Figure 1. Structure-based virtual metabolite docking protocol for enzyme activity prediction. When no structure has been experimentally determined for a protein

sequence, a model can be built using a variety of comparative modeling methods, but only when the structure of a homologous protein is available that has approximately

30% of greater sequence identity to the protein of interest. Whether using a structure of a model, it is critical that active site metal ions and cofactors are present, and that

catalytic residues are positioned appropriate for catalysis. Virtual metabolites libraries can be constructed and ‘docked’ against the putative active sites of structures or

models using computational tools more commonly used in structure-based drug design (e.g., Glide or DOCK). The docking scoring functions can be used to rank the

ligands according to their estimated relative binding affinities. Top-scoring metabolites are typically inspected for plausibility (Is the predicted binding mode compatible

with catalysis? Is the metabolite likely to be present in the relevant organism?), and then selected for experimental testing (in vitro enzymology). Protocols similar to that

shown here have been used in retrospective and prospective studies [22–25,27–33,36,39].
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In this review, we focus on the use of protein structure,
in conjunction with other types of information, to aid
function assignment, including the determination of novel
functions and pathways. Structural information has been
used to help elucidate many aspects of function, including
protein–protein interactions (e.g., scaffolding) and regula-
tion, but our focus here is biochemical function; that is, the
determination of enzymatic activities in vitro and in vivo.

Using structure to infer small molecule binding
From structure to function

Structural genomics (see Glossary) efforts have generated
a large number of structures for proteins with uncertain
function. In the case of enzymes, these structures can be
used to make inferences about function, either qualita-
tively, through inspection by an expert, or in more quan-
titative and automated ways. One class of methods
generates functional hypotheses based on physicochemi-
cal similarity of the putative active site to the active sites
of structurally and functionally characterized enzymes
[14–18]. A second class of methods exploits computational
tools developed primarily for computer-aided drug design
to predict the substrates, products, or intermediates of an
enzyme. Specifically, the strategy comprises docking an
364
in silico metabolite library against an enzyme active site
and experimentally testing the top-ranking metabolites to
determine in vitro biochemical activity (Figure 1). Two
excellent reviews are available describing the algorithms
used in docking programs and their limitations [19,20],
including their highly approximate treatment of key forces
driving binding, such as electrostatics, solvation, and
entropy losses. Although such algorithms have been ex-
tensively benchmarked and demonstrated their practical
utility for computer-aided drug design, significant effort
was required to test docking for enzyme-substrate recog-
nition, resulting in various modifications to improve per-
formance in this application [21–34]. Many metabolites
are more highly charged than typical drug-like molecules;
one successful approach for metabolite docking uses mo-
lecular mechanics-based scoring functions that treat elec-
trostatics and solvation in a more realistic (and
computationally expensive) [21,35]. Shoichet and co-
workers introduced the concept of docking ‘high energy
intermediates’ rather than substrates or products of
enzymes, and demonstrated that this approach improved
the ability to predict the binding mode of metabolites, and
the ability to distinguish true substrates from false posi-
tives [30,36].
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Even with these methodological improvements, there
are numerous caveats to this approach, both fundamental
and practical. A fundamental limitation is that docking
methods can, at best, predict binding interactions, which is
necessary but not sufficient for a ligand to be the substrate
of an enzyme. In practice, experimental testing of top hits
from metabolite docking frequently reveals many false
positives, including weak substrates with very poor kcat
(but reasonable KM); that is, metabolites that bind to the
enzyme but are not efficiently turned over [27].

An important practical limitation of metabolite docking
is that existing databases of metabolites are incomplete. A
second practical limitation is that the structures used for
docking must have ordered active sites, including any
metal ions. However, it is possible to predict relatively
small conformational changes associated with ligand bind-
ing, especially in side chains [37].

Another limitation for molecular mechanics-based scor-
ing functions is that the electronic structures of transition
states cannot be accurately described. In principle, com-
bining quantum mechanics and molecular mechanics
methods (QM/MM) can provide more accurate analysis
of the mechanisms and specificities of enzymes. A proof-
of-concept study has shown that such an approach may
become practical for studying certain challenging aspects
of enzyme specificity, compared with the more common use
of quantum mechanical methods to investigate reaction
mechanisms [38]. In the future, this type of approach may
be particularly important when studying enzymes with
intermediates that are radicals [e.g., P450 enzymes and
radical S-adenosylmethionine (SAM) enzymes]. However,
such calculations are currently prohibitively expensive to
be used on a large scale.

Despite these limitations, metabolite docking has been
shown to be useful in practice for generating testable
hypotheses about function, which have proven to be correct
in many cases. Herman et al. [30,36] and Fan et al.
[28,29,39] docked the high-energy intermediates of metab-
olites and successfully predicted deaminase activity in
several functionally uncharacterized enzymes of the ami-
dohydrolase superfamily. Favia et al. [22] examined the
ability of docking to identify cognate substrates of enzymes
belonging to the short chain dehydrogenases/reductases
superfamily. In several of these studies, subsequently
determined co-crystal structures with metabolites con-
firmed the binding mode predicted by docking
[23,24,27,32,33].

From sequence to function using homology models

Structural information can also be leveraged to help infer
enzymatic function for proteins lacking structures. Al-
though homology modeling remains imperfect [40], models
have been successfully used to infer aspects of function in a
many cases, including models of proteins based on the
structures of proteins with which they have relatively
low sequence identity (30% or lower); examples involving
metabolite docking are discussed below [27,28,33]. The
leverage of a single structure can be large; on average,
each new structure determined by structural genomics
efforts could be used to create models for hundreds or
thousands of homologous sequences [41]. Pre-computed
homology models can be obtained from databases such
as SwissModel [42] and ModBase [43], which contain
models for millions of protein sequences.

One of the simplest approaches to infer aspects of
enzyme function, when no structure is available, is to
identify putative active site residues in protein sequences
by sequence alignment to proteins with solved structures.
Changes in critical active site residues can suggest changes
in the enzymatic reaction (e.g., changes in catalytic amino
acids) or specificity. Constructing homology models can
provide additional information about the predicted 3D
arrangement of active site residues. Catalytic and other
critical active site residues are frequently well conserved
across homologs, facilitating accurate sequence alignment
and, hence, the accuracy of the models, for regions sur-
rounding the active site; nonetheless, allowing some de-
gree of receptor flexibility in the docking protocol can be
helpful to address small errors in, for example, side chain
positioning [24,33,37].

Homology models have been used to predict accurately
the substrate specificity of enzymes in the enolase
(Figure 2B,C) and isoprenoid synthase (Figure 2D) super-
families [24,25,27,33]. In each case, a structure of the
enzyme was subsequently determined that confirmed
the predicted binding mode, and in vitro enzymology con-
firmed that the ligands were proficient substrates. The
examples in Figure 2C,D are taken from studies in which
predictions were made for dozens of enzymes [27,33], using
homology models constructed based on template struc-
tures with sequence identities as low as 25%. That is, it
is straightforward to automate the process of creating
multiple homology models, all based on a particular tem-
plate structure, for a series of homologous proteins in a
multiple-sequence alignment and then dock against all of
them [28].

Finally, certain X-ray crystal structures can be used to
help identify small molecule ligands in a complementary
fashion. Almo and coworkers have estimated that 3–5% of
all structures determined by the New York Structural
Genomics Research Consortium contain organic ligands
from the expression host that survived purification [44].
Unassigned electron density, at sufficient resolution, can
be sufficient in some cases to infer the nature of the
substrate, although determining the mass of the metabo-
lite by mass spectroscopy provides a useful constraint. This
type of detective work led Almo and coworkers to discover a
novel metabolite, carboxy-S-adenosyl-L-methionine, and a
pathway that uses it to modify RNA [44]. In cases where
the identity of the ligand remains ambiguous, metabolite
docking may provide a useful way of identifying ligands
that match the electron density and are predicted to have
favorable binding interactions [45,46].

Although the number of protein structures is smaller
than the number of protein sequences inferred from ge-
nome sequencing, and will undoubtedly remain so, a vari-
ety of complementary approaches has emerged to utilize
these structures to make inferences concerning enzymatic
function. Currently, experimental testing remains essen-
tial, but the computational approaches can help guide the
design of experiments, and focus attention on enzymes
likely to have novel or unexpected activities. In favorable
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Figure 2. Predicted binding poses are in good agreement with subsequently determined experimental structures. Predicted ligand binding mode (cyan) superimposed with

the X-ray crystal structure (gold) of: (A) S-adenosylhomocysteine deaminase (PDB: 2PLM); (B) N-succinyl-L-Arg racemase (PDB: 2P8C); (C) D-Ala-D-Ala epimerase (PDB:

3Q4D), and (D) a polyprenyl synthase (PDB: 4FP4). In (B–D), the docking predictions were made using homology models based on crystal structures with 35%, 39%, and 29%

sequence identity, respectively.
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cases, homology modeling can be used to extend the use of
structure-based methods to large numbers of proteins
lacking experimental structures. A major challenge is
automating the metabolite docking methods, which remain
technically complex; the Metabolite Docker web resource
(http://metabolite.docking.org/) [47], and its application to
metabolite docking, represents important progress in this
direction.

Structural information in the context of pathways
As we have shown, a single structure (or model) of an
enzyme can be used to make testable predictions concern-
ing its potential substrate(s). However, in vitro activity
does not, by itself, necessarily imply in vivo biochemical
function. When enzymes can be placed into pathways or
networks, additional information is available for predict-
ing both in vitro and in vivo biochemical function.

In prokaryotes and certain eukaryotes, enzymes in-
volved in pathways are frequently located in close proxim-
ity on the genome. In some cases, functionally related
proteins also appear in certain organisms as gene fusions.
366
A family of genome context analysis techniques takes
advantage of these observations to infer functional rela-
tions among genes, even when they do not share sequence
similarity. These techniques have been exploited by data-
bases such as Metacyc [48], MicrobesOnline [49], STRING
[50], SEED [51], and IMG [52]. Although genome proximi-
ty is not a useful source of information for most eukar-
yotes, other types of experiment, such as interactome
mapping by mass spectroscopy or other methods [53,54],
can be used in an analogous manner; that is, to develop
hypotheses concerning proteins that have related func-
tions.

Structural genomics efforts have added a structural
perspective to biochemical pathways in certain organisms.
The Joint Center for Structural Genomics has determined
the structures of over 100 enzymes in the central metabo-
lism of Thermotoga martima, and created homology mod-
els for hundreds of others [55]. In less well-studied
organisms, it would be rare to find entire pathways for
which each enzyme has been structurally characterized,
but as in the case of T. maritime, it is frequently possible to

http://metabolite.docking.org/
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create models for multiple enzymes in a putative pathway.
In this context, metabolite docking can be expanded to
pathway docking; that is, metabolite docking against mul-
tiple structures or models of proteins hypothesized to
participate in a metabolic pathway or network [26,32].
In addition to increasing potentially the in vivo relevance
of the results, docking metabolites to multiple binding sites
in the same pathway can also increase the reliability of in
silico predictions of substrate specificity because the path-
way intermediates are chemically similar even if the pro-
teins involved are structurally unrelated. Put simply, the
product of one enzyme is the substrate for another enzyme,
and comparing the metabolite docking results can help to
refine hypotheses concerning the individual protein func-
tions as well as the overall pathway.

Pathway docking was first introduced by Kalyanara-
man and Jacobson to ‘predict’ retrospectively the inter-
mediates in the glycolysis pathway in Escherichia coli [26].
In this proof-of-concept study, a large and diverse in silico
metabolite library derived from Kyoto Encyclopedia of
Genes and Genomes (KEGG) was docked against struc-
tures and homology models of ten enzymes in the glycolysis
pathway. The ranks of the ‘correct’ substrates were all
within the top 1% of the hit list, and in six out of ten cases,
cognate substrates were ranked within the top 0.3%, that
is, among the top approximately 50 ligands.
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Zhao et al. performed a prospective application of the
pathway docking method, which led to the discovery of
new enzymes in the hydroxyproline betaine/proline beta-
ine metabolism pathways (Figure 3) [31,32]. The initial
focus was an uncharacterized member of the enolase
superfamily, HpbD, the apo structure of which was deter-
mined in a structural genomics effort. The genome con-
texts are similar for HpbD and its putative orthologs in
approximately 20 organisms, suggesting a conserved
pathway, and homology models could be created for many
of these (Figure 3). Metabolite docking against the struc-
ture and several homology models suggested that the
pathway involved catabolism of amino acid derivatives,
especially N-modified proline derivatives. A model of a
periplasmic binding protein encoded by a gene located
close to HpbD was particularly informative and suggested
that the binding site contained a cation-p cage comprising
three Trp side chains (Figure 3); docking results strongly
suggested that the cation would be a quaternary amine,
specifically a betaine (N-trimethylated amino acid). The
combined results led to the prediction of catabolic path-
ways for proline betaine and trans-4R-hydroxyproline
betaine (both are important osmolytes in marine organ-
isms), with HpbD performing inversion of stereochemistry
at the Ca position [31,32]. Subsequent in vitro enzyme
assays and in vivo metabolomics experiments confirmed
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these predictions and elucidated aspects of the regulation
of these pathways.

Challenges and opportunities
No single computational or experimental approach alone is
likely to ‘solve’ the problem of predicting or determining the
functions of the millions of currently uncharacterized
enzymes, especially for the most challenging goal of identi-
fying novel enzymatic activities and biochemical pathways.
However, the combination of sequence-based (bioinformat-
ics) and structure-based computational methods, together
with high-throughput protein expression, enzyme assays,
crystallography, metabolomics, phenotyping, and potential-
ly many other approaches, can provide powerful approaches
to generate and evaluate hypotheses. A major challenge and
opportunity is the development of methods to optimally
combine these disparate types of computational and experi-
mental data to make functional inferences. Even in the
context of pathway docking, functional inferences have thus
far been made with the aid of human knowledge and intui-
tion, but certain aspects of the data integration can certainly
be automated and systematized. The scope of the potential
applications of these integrated approaches is vast, and we
highlight a few opportunities here.

Biosynthetic pathways for natural products

Natural products, such as polyketides, nonribosomal pep-
tides, isoprenoids, alkaloids, and ribosomally synthesized
and post-translationally modified peptides, are structural-
ly diverse secondary metabolites, many of which have
biological activity and are used in modern medicine (eryth-
romycin, vancomycin, taxol, morphine, duramycin, etc.).
The biochemical pathways that create these natural pro-
ducts represent a challenge for function prediction because
the chemical space is enormous; that is, the number of
possible intermediates and end products of pathways in
secondary metabolism is almost limitless. Moreover, the
experimental characterization of the structures of these
secondary metabolites is often challenging due to frequent-
ly complex ring structures and stereochemistry. For these
reasons, the elucidation of the biosynthetic pathways of
these high-value secondary metabolites remains challeng-
ing, even when the genome of the producing organism has
been sequenced; for instance, only a small fraction of the
tens of thousands of known alkaloids have their biosyn-
thetic pathways fully elucidated [56,57].

One area of rapid progress has been the prediction of
templated biosynthetic pathways for polyketides and non-
ribosomal peptides, due to the modular nature of the
biosynthetic enzymes and their frequent occurrence in
large gene clusters or operons. Sequence–structure–func-
tion relations have been well characterized for certain
classes of enzyme in these pathways, such as polyketide
synthases and nonribosomal peptide synthetases [58–60].
This knowledge has been harnessed in efforts to achieve
combinatorial biosynthesis of novel polyketides and non-
ribosomal peptides [61–63]. However, elucidating the bio-
synthetic pathway of nontemplated natural products, such
as isoprenoids and alkaloids, remains nontrivial.

Isoprenoid biosynthesis pathways present both oppor-
tunities and challenges with respect to function prediction
368
[64,65]. In the biosynthesis of isoprenoids, isoprene units
(C5) are assembled by polyprenyl transferases to give long-
chain terpenes such as geranyl pyrophosphate (C10), far-
nesyl pyrophosphate (C15), geranylgeranyl pyrophosphate
(C20), and squalene (C30), which can then be converted into
diverse carbon skeletons by terpenoid synthases (also
called terpene cyclases), which are sometimes further
modified by other enzymes, such as SAM-dependent meth-
yl transferases. A paradigmatic isoprenoid pathway, the
biosynthesis of cholesterol, is illustrated in Figure 4; the
crystal structures of key enzymes in the pathway have
been solved, including farnesyl pyrophosphate synthase
[gold; Protein Data Bank (PDB): 1RQI], squalene synthase
(light blue; PDB: 3WEG), and oxidosqualene-lanosterol
cyclase (magenta; PDB 1W6K).

It is relatively straightforward to leverage structural
information to predict the product specificities of the poly-
prenyl synthases. Product chain length has been shown to
be determined primarily by the size of the cavity, and
Wallrapp et al. [33] have shown that it is possible to predict
chain-length specificity for sequences lacking structures
through a combination of homology modeling and docking.
By contrast, predicting the product specificity of isoprenoid
synthases is challenging, because the number of possible
products is enormous, and the enzymes must bind and
stabilize several carbocations and transition states leading
to a given product [66]. Despite these challenges, the
potential impact of elucidating the sequence–structure–
function relations of isoprenoid synthases is high, given the
importance of these enzymes in the biosynthesis of com-
plex, bioactive natural products and drugs.

Domains of unknown function

A high-value subset of functionally uncharacterized pro-
teins is ‘domains of unknown function’ (DUFs). As the
name suggests, no function is known for any member of
a DUF protein family; thus, annotating even a single
member of a DUF can have a large impact, by defining
(in the case of enzymes) aspects of the biochemical capa-
bilities. In Pfam 27.0, 26% (3885 out of 14 831) Pfam
families are DUFs, with ‘unknown function’ or ‘uncharac-
terized protein’ in their descriptions [67]. Structures are
available in the PDB for proteins in 379 DUF families (as of
2013) [68].

The potential impact of the systematic, structure-guid-
ed study of DUFs is suggested by the recent work of
Bastard et al. [69], who determined that the DUF849 Pfam
family contains b-keto acid cleavage enzymes of diverse
substrate specificity. In this work, 14 novel in vitro enzy-
matic activities of the DUF849 Pfam family have been
revealed through an integrated strategy, combining bioin-
formatics analysis to cluster the protein sequences and
structural analysis using both crystal structures and ho-
mology models. The structural analysis was primarily
qualitative (e.g., whether the substrate is neutral, positive-
ly, or negatively charged) but also supported by metabolite
docking. High-throughput enzymatic screening confirmed
many of the predictions and resulted in discovery of in vitro
activities for 80 enzymes, including several novel func-
tions; remarkably rapid progress for a protein family that
was, until recently, entirely uncharacterized.
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These crystal structures provide opportunities to predict functions of related enzymes of the isoprenoid synthase superfamily. However, function prediction for the

terpenoid synthases (also called terpene cyclases) is challenging due to the huge product chemical space created by carbocation rearrangements.
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Missing links in metabolism: orphan enzyme activities

and dead-end metabolites

In addition to the many functionally uncharacterized
enzymes, there are also many enzyme activities that have
been identified but are not associated with any protein
sequence. In fact, despite considerable efforts over the
past few years [70–76], 20% (1042 out of 5294 [77], as of
February 2014) of enzyme commission (EC) numbers are
not associated with sequence data in any of the three major
enzyme databases (Metacyc [48], ExPasy [78], and Brenda
[79]) and, thus, are described as orphan ECs. Other terms,
such as ‘orphan metabolic activities’ and ‘orphan enzymes’,
have also been used to describe the phenomenon. The
original publication dates for orphan ECs ranges from
the 1950s to today, with a mean of 1977 [72,73]. Many
orphan ECs have biologically important roles, and could be
an unexplored reservoir of new drug targets [72,80].

Our incomplete understanding of metabolism is also
reflected by ‘dead-end’ metabolites. Metabolites in bio-
chemical networks are generally linked to at least two
enzymes; that is, each metabolite is both the product of
one biochemical reaction and the substrate of another.
Dead-end metabolites are those that currently can only
be linked to one enzyme in an organism, and these can be
readily identified by methods of automated metabolic net-
work reconstruction [81]. For example, Mackie et al. re-
cently identified 127 potential dead-end metabolites in E.
coli K-12 [82].

The number of orphan enzyme activities and dead-end
metabolites will naturally decrease as new enzyme func-
tions are discovered. However, the ability to identify holes
in our understanding of metabolism in specific species
suggests new structure-based approaches. Instead of the
current approach where a candidate enzyme is studied for
functional clues, one could dock substrates (or intermedi-
ates) corresponding to orphan enzyme reactions and dead-
end metabolites to structures or models of many unchar-
acterized enzymes within the relevant organism(s).

Although enzyme function can be predicted from protein
sequence or, as emphasized in this review, protein struc-
ture, the combination of these approaches with high-
throughput experimental methods of studying metabolism
and methods to interrogate computationally the metabolic
networks of entire organisms is likely to be even more
powerful. Integrated experimental and computational
methods have great promise to fill systematically holes
in our understanding of both primary and secondary
metabolism.
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Box 1. Outstanding questions

� When the binding site of an enzyme is unknown and cannot be

inferred from homologous proteins, can we predict the site using

sequence- and/or structure-based methods? Can enzymes be

readily identified from sequence or structure, compared with

proteins that lack catalytic function?

� How complete are existing in silico databases of metabolites, for

specific organisms (e.g., Escherichia coli or humans) and for life

on Earth in general? Are there entirely new classes of secondary

metabolite that have not yet been discovered?

� How can we define the functions of an enzyme when it catalyzes

multiple reactions? What is the best way to predict functions of

such enzymes?

� How can information from high-throughput metabolomics, pro-

tein interaction, and phenotyping experiments be optimally

combined with sequence and structural information to infer

enzyme activities and pathways or networks?

� Among the approximately 50 million protein sequences identified

from genome sequences thus far, how many enzyme activities exist?

What fraction of enzymes has multiple activities in vitro and in vivo?
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Concluding remarks
In the sequence–structure–function paradigm, inferring
function from structure has proven challenging, and many
approaches to function prediction have not utilized struc-
tural information at all. In the case of enzymes, there has
recently been rapid progress in experimental and compu-
tational approaches to inferring aspects of enzymatic ac-
tivity from structure. Numerous challenges remain (Box 1),
including the limitations of existing algorithms for metab-
olite docking and homology modeling, incomplete in silico
databases of metabolites, and incomplete structural cover-
age of putative enzyme families, despite the advances
made by high-throughput protein expression and structur-
al biology (structural genomics). Nonetheless, structure-
guided approaches have shown promise, particularly for
the most challenging goal of identifying novel metabolites,
enzyme activities, and biochemical pathways. As in drug
discovery, where structural information is now routinely
used to guide design, we believe that enzyme structures
will prove to be an essential component of strategies for
enzyme function prediction, not in isolation, but rather
integrated with many other experimental and computa-
tional methods.
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